

City of Kingston - Third Crossing of the Cataraqui River -Parks Canada Environmental Impact Analysis Detailed Impact Analysis

Appendix O Ghcfa k UhYf A UbU[Ya YbhF Ydcfh (Hatch - 2019)

© Hatch 2019 All rights reserved, including all rights relating to the use of this document or its contents.

City of Kingston Third Crossing

Stormwater Management Report

Prepared by:	David Jackson / Evan May	February 19, 2019
	Author's Name	Date
Checked by:	Matt Delorme	February 19, 2019
	Principal's Name	Date
Approved by:	Dan Franco	
	Client/Project Leader	Date

Revision Status History

В	City Comments	D.Jackson / E. May	M. Delorme	n/a	03-11-2019
Α	1 st Draft	D.Jackson / E. May	M. Delorme	n/a	02-19-2019
Rev No.	Description	Originator	Checked	Approved	Date

REVISION HISTORY

Date	Rev No.	Description	Revised By
03-11-2019	В	City Comments	E. May

Project Report

March 11, 2019

City of Kingston Third Crossing Bridge

Stormwater Management Report

Table of Contents

1.	Introduction3				
	1.1 F 1.2 S 1.3 (Purpose Site Location and Description Geotechnical Information	3 3 3		
2.	Draina	age Design Criteria and Stormwater Objectives	4		
	2.1 F 2.2 [Reference Documents and Standards Drainage Design Criteria and Stormwater Management Objectives	4 4		
3.	Existir	ng Stormwater Management Conditions	7		
	3.1 \ 3.2 (3.3 E	West Segment (S1) Central Segment (S2) East Segment (S3)	7 7 7		
4.	Propo	sed Stormwater Management	8		
	4.1 \ 4.2 (4.3 E	West Segment (S1) Central Segment (S2) East Segment (S3)	8 9 0		
5.	Storm	water Management Design1	2		
	51 H	1 Hydrologic Modelling	2		
	5.1 5.1 5.1	1.1 Rainfall	4		

7.	7. Conclusions		
6.	Crite	ria Summary	24
	5.6	Outlet Structure	23
	5.5	Required Storage	21
	5.4	Stormwater Quantity Control	21
	5.3	Stormwater Quality Control	20

1. Introduction

1.1 Purpose

The City of Kingston has undertaken the detailed design of the Third Crossing Bridge (K3C) and associated infrastructure over the Cataraqui River. The Stormwater Management Report (SWMR) outlines the strategy and detailed design of the stormwater management (SWM) works for the land features of the bridge crossing, which include the east and west roadway approaches, bridge structure and Highway 15 intersection improvements. This report has been developed during the validation phase of the Third Crossing Bridge Project.

1.2 Site Location and Description

The new Third Crossing of the Cataraqui River is proposed to connect John Counter Boulevard on the west bank (West Segment (S1)) and Gore Road on the east bank (East Segment (S3))(Figure 1-1). The approach road network will be extended to Montreal Street in the west and Highway 15 in the east. Highway 15 will also be impacted by the new crossing with proposed improvements 150m north and south of the intersection.

Figure 1-1: Key Plan

1.3 Geotechnical Information

Consistent with the SWM Report prepared by J.L. Richards & Associates Limited (JLR) (April, 2017), the soil characteristics will be a combination of Hydrological Soil Groups (HSG) B and D, which have been developed from the Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) soil mapping for Kingston.

2. Drainage Design Criteria and Stormwater Objectives

The stormwater management objectives and drainage design criteria have been developed in consultation with the City of Kingston and references developed as part of the Preliminary Design. The following sections will illustrate the standards in order of precedence applied for the drainage and SWM design.

2.1 Reference Documents and Standards

Stormwater Management and drainage design will be undertaken in accordance with the criteria contained in this document and the following reference documents. In the event of a conflict between the criteria or requirements contained between the documents, the following descending Order of Precedence shall apply:

- City of Kingston Subdivision Development Guidelines and Technical Standards (2014);
- City of Kingston Site Plan Control Guidelines (2009);
- Cataraqui Conservation Authority; Appendix I: Guidelines for Stormwater Management (2014);
- MOE Drainage Manual (2003).
- MTO Highway Drainage Design Standards (2008).
- Ontario Provincial Standards for Roads and Public Works (OPS)

2.2 Drainage Design Criteria and Stormwater Management Objectives

The drainage and stormwater management (SWM) criteria for the Third Crossing of the Cataraqui River project has been developed and divided into four (4) design requirements, hydrology, hydraulics, SWM criteria and project specific requirements.

Each component has been defined using the hydrologic and hydraulic requirements of the reference documents in Section 2.1 while recognizing existing studies and background information in the project area. The following table documents the target criteria for the drainage and SWM for the Third Crossing Bridge.

	Hydrologic Criteria
Design Storm	Rainfall will be based on of the City of Kingston 2014 Subdivision Development Guidelines and Technical Standards.

Soil Information	Soil Information Soil drainage condition will be estimated based on Soil Survey of Frontenac Country and or on-site soil borehole testing		
Hydrologic Modelling	 Hydrologic modelling will remain consistent with the methodology set forth in the SWM Report prepared by JLR (2017). Modelling for will be conducted using PCSWMM (for stormwater management facilities). As required in the City of Kingston Subdivision Development Guidelines and Technical Standards, the Rational Method will be used for hydrologic modelling for storm sewer sizing. Design Hydrologic Flows for Freeway: Major System flows (surface drainage): 100-year flow Minor System flows (piped drainage): 10-year flow 		
Catchment Boundary	Maintain existing catchment boundaries from the <i>approved Hydrology Studies</i> or existing conditions to the extent that is feasible.		
Catchment Parameters	Modelling Parameters (i.e. CN, T_p) will be based on the approved parameterization listed within the SWM Report prepared by JLR (2017).		
	Hydraulic Criteria		
Culvert Crossing Design Flows	City of Kingston and Design Standard WC-1, MTO Highway Drainage Design Standards (2008).		
Storm Sewer Design Flows	Storm sewers should be designed to safely convey the 10-year design flow in accordance with City of Kingston requirements for an arterial road.		
Storm Sewer Design Catchbasin spacing shall not exceed the maximum distance of 90 m accordance with City of Kingston requirements. The sewer design met normally be the Rational Method. Design sheets shall be submitted in ac with the City's standard format.			
Culvert Crossing Criteria City of Kingston, a minimum freeboard of 1 m to be provided from the desig water elevation to the edge of pavement, WC-7, S3.2. Freeways, Arterial, Col MTO Highway Drainage Design Standards (2008), where roadway elevation p			
Swale Design	Swale gradients and geometry shall be developed such that the maximum velocity at the design flow shall not exceed 0.9 m/s, which is the maximum permissible velocity for grass land cover in highly erodible soils. Swale design will be a combination of triangular (v) and flat bottom shaped structures with 2:1 or 3:1 slopes, a range of widths and varying depths based on site grading and conveyance requirements.		
	Stormwater Management Criteria		
Quantity	Control post-development 2-100 yr. stormwater runoff to be equal to or less than the pre-development level where feasible. Post-development peak flow rates up to the 100-yr stormwater runoff discharging to the Cataraqui River will not exceed the flows identified within the SWM Report prepared by JLR (2017) as follows: • West Segment: 0.68 m ³ /s • East Segment: 1.32 m ³ /s		

Quality	On-site water quality treatment will be provided in accordance with <i>MOE Drainage Manual</i> (2003). An 'Enhanced' level of stormwater quality control for 80% total suspended solids (TSS) removal for all proposed impervious areas, including the bridge deck.				
Water Balance Subject to soil drainage condition water balance can be achieved throw implementation of infiltration LIDs where feasible. The design and implementation need to be based on the MOE Drainage Manual (2003).					
	Project Specific Requirements				
	A catchbasin on the south side of Gore Road east of Point St Mark will be designed to intercept flows before the pedestrian crossing.				
City of Kingston	Flows at Station 11+507 will be diverted to the Cataraqui River around the embankment to eliminate a crossing underneath the embankment.				
	Underground infrastructure shall not be located under a hard surface, where feasible.				
CRCA	A Stormwater Management Plan will be developed to demonstrate how the SWM controls designed for the bridge and approaches will satisfy the stormwater management objectives in accordance with CRCA requirements for this project.				
	A hydrologic and hydraulic analysis to assess the impact of proposed fill within the 1:100 year flood plain of the Cataraqui River in accordance with CRCA O.Reg 148/06 will be developed.				

The vertical profile of the bridge allows the stormwater to drain from the middle of the navigational channel span to the approaches. Drains along the curb lines will collect the stormwater which will be piped to a stormwater management facility on-land (page 97 of PDR).

3. Existing Stormwater Management Conditions

The following section will illustrate the existing stormwater management conditions for the west, central, and east segments. Commentary regarding the drainage conveyance conditions, stormwater management facilities, and overall site outlets will be illustrated for the existing condition shown in Appendix A.

3.1 West Segment (S1)

The west segment, at the location of the proposed crossing, features a rural cross-section with poorly defined ditches handling runoff from John Counter Boulevard from Montreal Street to the river. The north side of John Counter Boulevard drains via a ditch along the south rear lots of the new subdivision. The south side drains via overland flow towards the Cataraqui River.

There is currently no controlled outfall to the river, all runoff enters the Cataraqui River via overland sheet flow.

3.2 Central Segment (S2)

The central segment is the Cataraqui River, no existing stormwater management features exists within this segment.

3.3 East Segment (S3)

The east segment features an existing 600mm storm sewer network draining along the south side of Gore Road towards the Cataraqui River. The minor system carries runoff from the intersection of Highway 15 and Gore Road with connections and ditch inlets at Point St Mark Drive towards the river. There is an existing 900mm culvert at the noted intersection, which receives external runoff from lands east of Highway 15. The culvert receives flow from the rural grassed ditches from the east and south of the intersection towards the Gore Road network.

The drainage network along the south of Gore Road ultimately drains to the forested areas east of the Cataraqui River, which flow into a ephemeral channel. The ephemeral channel ultimately drains via overland flow into the Cataraqui River.

4. Proposed Stormwater Management

4.1 West Segment (S1)

Design Conditions

The proposed roadway and bridge design conditions for the west segment approach is as follows:

 John Counter Boulevard - A three (3) lane urban cross-section with left and right turn lanes at Ascot Lane and Montreal Street, as well as a bus bay in front of 917 Montreal Street.

Drainage and SWM

The proposed drainage and stormwater management measures designed for the west segment are a combination of linear enhanced grass swales, conveyance culverts, storm sewers, and oil grit separators to satisfy the quantity and quality control objectives as well as the conveyance criteria. Proposed SWM design considers the recommendations from the SWM Report prepared by JLR, where applicable. The following is a break down of the treatment measures and structures designed for the west segment:

Quantity Control

• enhanced grassed swales with a 2 m wide, 3:1 side slopes will be installed to safely convey and control the outflow from the west approach;

Quality Control

• a stormwater treatment unit (oil-grit separator units such as 'Stormceptors') will be used at the outlet of the enhanced grass swale runoff;

Erosion Control

• Rip rap erosion protection has been designed at all storm sewer lead outfalls to the enhanced grass swales and outfalls.

Drainage Design – Minor System

 new stormwater piping (1:10 year event via to low point on the approach road) using 300 - 825 mm diameter outlet pipes conveying runoff from the approach and bridge to the enhanced grass swales along the north side of John Counter Boulevard;

Drainage Design – Major System

• from the low point, runoff is piped to the enhanced grass swales whereas major event flows will flow overland to the east towards the Cataraqui River

• bridge drainage joins the approach drainage also at the low point

For the West Segment Design drawing refer to Appendix A – Figures – Sheet C001.

4.2 Central Segment (S2)

The proposed roadway and bridge design conditions for the central segment is as follows:

- West Bridge design features the following design:
 - o North; No Multi-use Path; 6.0m Deck Width
 - o South; Multi-use Path; 10.5m Deck Width
- East Bridge design features the following design:
 - North; No Multi-use Path; 6.0m Deck Width
 - o South; Multi-use Path; 10.5m Deck Width

Drainage and SWM

The proposed drainage and stormwater management measures designed for the central segment are a is management of conveyance with proposed deck drains and storm sewers on the bridge. Ultimate discharge locations are stormwater management facilities within the West and East segments designed to satisfy the quality control objectives as well as the conveyance criteria. Proposed SWM design considers the recommendations from the SWM Report prepared by JLR, where applicable. The following is a break down of the treatment measures and structures designed for the central segment:

Quantity Control

 No quantity control for the central segment based on the SWM Report prepared by JLR;

Quality Control

• Quality control will be captured through Sections 4.1 for the West Segment and Section 4.3 for the East Segment;

Erosion Control

• No erosion control required for the central segment;

Drainage Design – Minor System

• New stormwater piping (1:10 year event) using 300 - 525 mm diameter outlet pipes conveying runoff from the bridge to the east and west segment approaches;

Drainage Design – Major System

• Deck inlets and stormwater piping spaced appropriately to ensure lateral spread will not exceed the shoulder width in the 1:10 year event. In events up to the 1:100 year lateral spread will not encroach to a minimum of 2.5m of bridge outer lane width.

For the Central Segment Design drawing refer to Appendix A – Figures – Overall General Arrangement.

4.3 East Segment (S3)

Design Conditions

The proposed roadway and bridge design conditions for the west segment approach is as follows:

- Gore Road A two (2) to five (5) lane urban cross-section with left and right turn lanes at Point St. Mark Drive, Library Road and Highway 15.
- Highway 15 A four (4) lane urban cross-section with a dual left turn north bound at Gore Road and a single south bound left turn, as well as separate right turn lanes at Gore Road.

Drainage and SWM

The proposed drainage and stormwater management measures designed for the east segment are a combination of a dry pond facility, conveyance culverts, storm sewers, and oil grit separators to satisfy the quantity and quality control objectives as well as the conveyance criteria. Proposed SWM design considers the recommendations from the SWM Report prepared by JLR and Highway 15 Municipal Class Environmental Assessment (EA) (2018), where applicable. The following is a break down of the treatment measures and structures designed for the east segment:

Quantity Control

- a dry pond facility near the east segment, having a 4:1 length-to-width ratio, a 4:1 side slope, and an active storage depth of less than 1 m;
- two oversized storage pipes, 1350mm and 750mm diameter, which will outlet to the ditch in front of the Library

Quality Control

• a stormwater treatment unit (oil-grit separator units such as 'Stormceptors') will be used at the outlet of the enhanced grass swale runoff;

Erosion Control

• Rip rap erosion protection has been designed at all storm sewer lead outfalls to the enhanced grass swales, dry pond facility and outfalls.

Drainage Design – Minor System

- continued maintenance of the existing minor system that drains directly to the river along the south of Gore Road via a 600 mm diameter storm sewer. Relocated catchbasin leads from Gore Road. Flows will not be increased and ditch outfall location from existing conditions will be relocated.
- new stormwater piping (1:10 year event via to low point on the approach road) using 300 – 450 mm diameter outlet pipes conveying runoff from the approach and bridge to the north, flowing into enhanced grass swales, which drain to the dry pond facility.
- a new minor system conveying runoff to the enhanced grass swale north of Gore Road to capture the road widenings, including west of Point St. Mark Drive.
- a new minor storm sewer system will convey runoff to the four key outfalls along Highway 15 at the southwest ditch, southeast ditch, existing Gore Road intersection ditch inlet, and existing low point to the north of the Library entrance.

Drainage Design – Major System

The proposed major storm conditions will flow via surface flow across the roadway to the following locations:

- from the Gore Road approach roadway low point, runoff is piped to the enhanced grass swales whereas major event flows will flow overland to the west towards the Cataraqui River.
- from the Highway 15 intersection roadway low point, major storm runoff will flow to the north of the Library entrance.
- from the south end of the Highway 15 intersection improvements, major storm runoff flows to the existing drainage ditches.
- accommodation of bridge drainage and overland flows from major events into the dry pond facility.

For the West Segment Design drawing (East Shore and Highway 15) refer to Appendix A – Figures – Sheets C002 and C003.

5. Stormwater Management Design

The stormwater management design for the K3C bridge over the Cataraqui River has been developed using a variety of elements and design tools. The following section illustrates the hydrologic modelling, hydraulic design, and SWM design for all aspects of the K3C project.

5.1 Hydrologic Modelling

The hydrologic modelling to simulate the runoff conditions for the existing and proposed conditions were developed through PCSWMM software. Localized changes will be proposed where necessary. Parameterization and discharge rates to the Cataraqui River will remain consistent with the SWM Report prepared by JLR (2017) and the Highway 15 Municipal Class Environmental Assessment (EA) (2018).

The existing conditions scenario was modelled as follows:

- *West segment* was modelled as a single 4.03 ha catchment draining to the Cataraqui river.
- **Central Segment** was not modelled during existing conditions as it is currently within the Cataraqui River.
- East segment was divided into three (3) distinct catchments,
 - East Bank 1.43 ha drains along the shoreline of the Cataraqui River,
 - *East Approach* 4.21 ha drains the Gore Road roadway and approach roads,
 - *East Upstream* 20.46 ha drains into the existing storm sewer along Gore Road from the adjacent rural estate subdivision,

The proposed conditions scenario was modelled as follows:

- West Segment was divided into seven (7) distinct catchments
 - West Montreal Street 1.94 ha drains via a combination of surface and piped drainage to the Montreal Street and flows south along the roadway away from the west segment approach.
 - North John Counter Blvd and west of Ascot Lane 0.60 ha drains via surface ditching and piped leads along the roadway to a culvert at Ascot Lane.
 - North John Counter Blvd and east of Ascot Lane 0.36 ha drains via surface ditching and piped leads along the roadway to a culvert at the former Marina lands.

- South John Counter Blvd and west of Ascot Lane 0.48 ha drains via piped leads to the north of John Counter Blvd.
- South John Counter Blvd and east of Ascot Lane 0.26 ha drains via pipe storm sewer leads to the north of John Counter Blvd.
- Former Marina lands 0.37 ha drains via surface ditching to the outfall and west shore lands at the Cataraqui River.
- West Shore North and South of John Counter Blvd Cataraqui River 2.02 ha
 drains via surface sheet flow into the Cataraqui River.
- Central Segment was divided into two (2) distinct catchments,
 - West Bridge 1.16 ha drains from bridge high point to the west approach flowing via a pair of piped networks along the north and south side of the bridge.
 - *East Bridge* 0.14 ha drains from the bridge high point to the east approach flowing via a pair of piped networks along the north and south side of the bridge.
- East Segment was divided into six (6) distinct catchments,
 - *East Upstream* 20.29 ha drains into the existing storm sewer along Gore Road from the adjacent rural estate subdivision,
 - Gore Road and Highway 15 0.16 ha drains to the existing Gore Road and Highway 15 intersection south along Gore Road.
 - North of Gore Road 1.26 ha drains the library lands and areas along the north side of Gore Road to a culvert at the meadow.
 - North of Gore Road, Meadow Lands 0.50 ha drains the upstream library lands and meadow lands towards the dry pond facility.
 - South of Gore Road at Point St Mark Drive to Highway 15 0.81 ha drains via piped storm sewer leads to the existing Gore Road drainage network and outlet ditch.
 - East Shore North and South of Gore Road 3.30 ha drains via surface flow to the dry pond facility, which flows to the existing outfall into the Cataraqui River.

5.1.1 Rainfall

Rainfall distributions have been adopted from the SWM Report from JLR,(2017). To support the various design tools executed for the SWM design, the following is a summary of the rainfall and storm distributions utilized for each aspect of the design:

- The 24-hour SCS distribution from the Environment Canada gauge at the Kingston Pumping Station was selected for the PCSWMM model and design for each outfall, enhanced grass swale, pipe network, and pond design.
- The City of Kingston rational method ABC values and calculation was selected for the design and verification of the storm sewer network.
- The MTO IDF curve was selected for verification of the bridge storm sewers, Highway 15 works (consistent with the EA design), and the overall SWM design.

5.1.2 Catchment Parameters

The catchment parameters are based on the SCS Curve Number (CN) method used to simulate the runoff and infiltration of the catchments.

- The CN values used for the PCSWMM modelling are consistent with the existing SWM Report (2017) prepared by JLR.
- The proposed conditions level of imperviousness was recalculated based on the design roadway and bridge configuration including all lanes, sidewalks, and existing sources of imperviousness.

All other parameters can be found in Appendix B – Model Files within the model output files. All parameter values are consistent with the JLR design.

5.2 Hydraulics

The hydraulic analysis for the K3C project has been developed to evaluate all drainage infrastructure against the required design criteria from the City of Kingston. The following section illustrates the performance and approach for evaluating the storm sewers and culverts within the K3C limits.

5.2.1 Storm Sewer Sizing

The minor system conveyance will be a combination of enhanced grass swales and storm sewers, which will service the east, central and west segments.

- The storm sewer sizing has been developed and verified using the Rational Method, in accordance with City of Kingston criteria (Appendix C).
- The rainfall intensity utilized for the design of the sewers has been taken from the City of Kingston 2014 Subdivision Development Guidelines and Technical Standards.

• Storm sewer sizing was completed for the 10-year storm intensity from the Environment Canada Kingston Pumping Station rain gauge.

5.2.1.1 East Segment

The east segment storm sewer design has been divided into approach roadway for Gore Road and Highway 15:

Approach Roadway Network - Gore Road

- STM100 to 101 300 to 375 mm PVC storm sewers draining the north side of Gore Road roadway west of Highway 15 to culvert STM300 at the Library Road flowing west towards the Cataraqui River.
- STM102, STM103 and STM112 300 mm PVC storm sewer connections draining the south side of Gore Road between Point St. Mark Drive to the Highway 15 intersection in the east.
 - *STM102 and STM103* are proposed direct connections to the existing 600mm storm sewer running along Gore Road.
 - *STM112* is a catchbasin lead connection from the crosswalk at Point St Mark Drive.
 - Due to the configuration and orientation of this connection, a catchbasin manhole is proposed.
- *STM104 to 105* 300 mm PVC storm sewer outlet to the east side ditch at Library Road.
 - Due to current topography and slopes experienced within this area, a catchbasin manhole ditch inlet is proposed to convey this runoff to the downstream v-ditch.
- *STM107* 300 mm PVC storm sewer outlet to a rip rap pad flowing into the south enhanced grass swale along Gore Road towards the Cataraqui River.
- *STM108 to 109* 300 mm PVC storm sewer outlet into rip rap pad flowing into the enhanced grass swale towards the dry pond facility.
- *STM110 to 111* 300 to 475 mm PVC storm sewers draining both sides of Gore Road and the east bridge network.
 - *STM110* is a 300 mm PVC with a double catchbasin structure connecting the 300mm south PE piping from the bridge.

- STM111 is a 450 mm PVC outfall with a double catchbasin structure connecting both the south STM110 drainage and the north bridge 300 mm PE piping.
 - All runoff from this network discharges across a rip rap pad and into the dry pond facility prior to flowing into the Cataraqui River.

Approach Roadway Network – Highway 15

- *STM700* 300 mm PVC storm sewer draining the west side of the Highway 15 roadway to the existing ditch at the limit of construction.
- *STM701* 300 mm PVC storm sewer draining the east side of the Highway 15 roadway to the existing ditch at the limit of construction.
- *STM702 to STM704* 300 to 900 mm PVC and Concrete storm sewers draining both sides of Highway 15 south of the Gore Road intersection to the existing ditch inlet and culvert crossing east to west south of the intersection.
 - STM702 750 mm Concrete storm sewer draining the west and upstream STM704 runoff to the STM703 connection at the existing culvert crossing.
 - STM702 has been designed as a control sewer with a 232 mm orifice plate to meet the existing peak flow rates.
 - STM703 900 mm Concrete storm sewer connected as an extension to the existing culvert, which is to tie into the existing ditch inlet catchbasin.
 - STM703 will feature a catchbasin manhole that will extend the existing storm sewer receive runoff upstream within the network, adjacent lands and Highway 15 drainage from the surface.
 - STM704 300 mm PVC storm sewer draining runoff from the east side of Highway 15 across to the west storm sewer network at STM702.
- STM705 to STM709 300 to 1350 mm PVC and Concrete storm sewers draining roadway runoff from both the west and east sides of Highway 15 north of the Gore Road intersection to the limit of construction, which discharges at the low point north of the Library entrance.
 - STM705 300mm PVC storm sewer lead connection draining the southeast portion of the Highway 15 and Gore Road intersection flowing north to the STM706 structure.

- *STM706* 1350mm Concrete storm sewer draining the east side of Highway 15 and upstream runoff to the STM709 structure.
 - STM706 has been designed as a control sewer with a 285 mm orifice plate to meet the existing peak flow rates.
- STM707 300mm PVC storm sewer draining the east side of Highway 15 at the north limits of the project flowing into STM708.
- STM708 300mm PVC storm sewer draining to the STM709 manhole structure controlling flows into the OGS3.
- *STM709* 375mm PVC storm sewer draining all upstream runoff from prior to and after the OGS3 filtration and discharge into the Library entrance ditch.

5.2.1.2 Central Segment

The proposed bridge storm sewer network flows are divided into four distinct networks given the road layout and multi-use path along the south portion of the bridge. The bridge network is as follows:

- North east bridge design from 11+219.5 to 11+428.8 features the following storm sewer design:
 - STM500 to STM501 300 mm PE storm sewer draining along the north side of the bridge structure to STM111.
- South east bridge design from 11+219.5 to 11+428.8 features the following storm sewer design:
 - STM503 to STM504 300 mm PE storm sewer draining along the south side of the bridge structure to STM110.
- North west bridge design from 11+219.5 to 10+294 features the following storm sewer network:
 - STM600 to STM607 600 mm PE storm sewer draining along the north side of the bridge structure to STM205.
- South west Bridge design from 11+219.5 to 10+294 features the following storm sewer network:
 - STM608 to STM617 600 mm PE storm sewer draining along the south side of the bridge structure to STM204.

5.2.1.3 West Segment

The west segment storm sewer design has been divided into approach roadway for John Counter Blvd:

Approach Roadway Network – John Counter Blvd

- STM200 to 202 300 to 375 mm PVC storm sewers draining the south side of the John Counter Blvd roadway west of Ascot Lane to culvert STM400 at Ascot Lane flowing east towards the Cataraqui River.
- *STM203 to 206* 375 to 825mm PVC storm sewers draining both sides of John Counter Blvd between the bridge and east of Ascot Lane as well as the bridge storm sewers along the north and south sides of the roadway.
 - STM203 is a double catchbasin with a 375mm PVC lead connection to STM206 outfall towards the river.
 - *STM204* is a 600mm PVC storm draining to the main sewer line along the south of the bridge.
 - *STM205* is a 525mm PVC storm sewer draining to the main sewer line along the north of the bridge.
 - *STM206* is an 825mm PVC storm sewer outfall draining to the proposed enhanced grass swale.

All conveyance design including capacity and layouts are featured within Appendix A and Appendix B, and Appendix C for drawings and storm sewer design sheets

5.2.2 Swale and Ditch Conveyance Design

The conveyance design for the east and west segment road approaches require the utilization of enhanced grass swales and ditches of a variety of geometries to provide safe conveyance of runoff to the treatment facilities and ultimately, the outfalls into the Cataraqui River.

The following are the proposed ditching for both the east and west segment drainage systems:

5.2.2.1 East Segment

- *EGS-100* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale south along Gore Road draining to the Cataraqui River outfall north of Gore Road.
- *EGS-101* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale north along Gore Road to the dry pond facility.

- *EGS-102* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale east along Library Road flowing into STM105 ditch inlet catchbasin.
- VS-100 0.6m deep with 2:1 side slopes v-ditch swale north of Gore Road flowing into STM105 ditch inlet catchbasin.
- *VS-101* 0.6m deep with 2:1 side slopes v-ditch swale northwest along Library Road flowing into the EGS-101 towards the dry pond facility.

5.2.2.2 West Segment

- *EGS-200* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale south along Gore Road draining to the Cataraqui River outfall north of Gore Road.
- *EGS-201* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale north along Gore Road to the dry pond facility.
- *EGS-202* 2m wide flat bottom with 2.5:1 side slopes enhanced grass swale east along Library Road flowing into STM105 ditch inlet catchbasin.
- *VS-200* 0.6m deep with 2:1 side slopes v-ditch swale north of Gore Road flowing into STM105 ditch inlet catchbasin.
- *VS-201* 0.6m deep with 2:1 side slopes v-ditch swale northwest along Library Road flowing into the EGS-101 towards the dry pond facility.

5.2.3 Culvert Design

The following is an inventory of the conveyance culverts, grouped by east and west segments and categorized as centreline and entrance culvert structures.

5.2.3.1 East Segment

The conveyance culverts constructed to convey runoff for the east are as follows:

- *STM300* 450 mm Concrete culvert draining lands east of Library Road including the roadway runoff from Gore Road towards the Highway 15 intersection.
- *STM301* 450 mm PVC culvert draining the dry pond facility through both the inlet and outlet of the OGS1 facility towards the Cataraqui River.

5.2.3.2 West Segment

The conveyance culverts constructed to convey runoff for the west segment are as follows:

- *STM400* 450 mm CSP culvert draining lands west of Ascot Lane along the north side ditch of John Counter Boulevard.
- STM401 450 mm CSP culvert draining the v-ditch around the ring road south of Gore Road.

- *STM402* 450 mm CSP culvert draining the ditch south of John Counter Boulevard underneath the new trail.
- *STM403* 450 mm PVC culvert draining upstream lands on the west approach at the inlet and outlet ends of OGS2 into the rip rap level spreader at Catarqui River.

5.3 Stormwater Quality Control

The stormwater management quality control targets are based on the City of Kingston and MOE requirements, influenced by the SWM report prepared by JLR. The water quality measures are as follows:

- West Segment
 - OGS1 an OSR 2000, oil grit separator provides filtration of runoff removing suspended solids discharging from the enhanced grass swales into the outfall,
 - Enhanced Grass Swales swales are designed along the north and south sides of John Counter Boulevard to provide filtration and velocity control of runoff prior to discharge into the Cataraqui River, and,
 - Rip rap protection and check dams erosion protection at the storm outfalls and throughout the ditching provide velocity reduction, which promotes settling within the ditches.
- East Segment
 - OGS2 an STC 2000, oil grit separator provides filtration of runoff removing suspended solids discharging from the dry pond facility into the Cataraqui River,
 - Enhanced Grass Swales swales are designed along the north and south sides of Gore Road to provide filtration and velocity control of runoff prior to discharge into the Cataraqui River, and,
 - Rip rap protection and check dams erosion protection at the storm outfalls and throughout the ditching provide velocity reduction, which promotes settling within the ditches.

OGS treatment unit sizing is summarized within the Table 5-1. Stormceptor sizing reports are located within Appendix D.

Location	Drainage Area (ha)	Imperviousness (%)	OGS Device	TSS Removal %
West Segment – John Counter Blvd Outfall	3.84	58.5	OSR 2000	80
East Segment – Gore Road Outfall	3.42	49.6	STC2000	80
East Segment – Highway 15 Outfall	0.66	80	STCEF6	60

Table 5-1 – OGS Sizing Summary

5.4 Stormwater Quantity Control

The stormwater management quantity control target for the K3C project is to satisfy the post to pre development plus the uncontrolled runoff from the bridge deck surface between shorelines for the 100-year storm event.

The following Table 5-2 summarizes the water quantity control targets and corresponding release rates for both the west and east segments;

Table 5-2 - Quantity	Control Targets
----------------------	-----------------

Flow Condition	West Segment (m³/s)	East Segment – Gore Road (m³/s)	East Segment – Highway 15 (m³/s)
Pre-development peak flow to river	0.43	1.29	0.19
Peak runoff from bridge surface	0.25	0.05	0
Target peak flow (Pre plus bridge)	0.68	1.33	0.23
Post development peak flow to river	0.63	1.32	0.19

As indicated within Table 5-2 the peak flow quantity controls for the bridge, west and east segments, as well as the Highway 15 portion of the site are met.

5.5 Required Storage

The stormwater management controls have been developed and sized to provide sufficient storage to meet the peak outflow rates at the site outfalls, specifically into the Cataraqui River.

The following section illustrates the control structures, pond facilities, and oversized storage pipes developed to satisfy the outflow rates.

5.5.1.1 East Segment Dry Pond

The east segment pond is located at the north side of Gore Road along the Cataraqui River with the following characteristics:

- Pond has been sized with a length to width ratio of 4,
- Side slopes are designed at 4:1
- Active storage depth is less than 1m.

The stage storage relationship is summarized within Table 5-3. Pond relationship and model results are included within Appendix B.

East Pond	Elevation (m)	Area (m²)	Volume (m³)	Uncontrolled Flow In (m³/s)	Controlled Peak Flow Out (m³/s)
Base of Pond	76.3	181	0		
Maximum Water Level	77.2	456	285	0.399	0.162
Top of Pond	77.6	560	458		

Table 5-3 - East Segment Stage Storage Relationship

5.5.1.2 East Segment – Highway 15 – Oversized Storage Pipes

The east segment Highway 15 design has been developed to recognize the peak flow release rates at the main outfall at the low point north of the Library entrance.

In addition to that outfall location, there is a second segment of peak flow control at the connection between the STM703 and the existing ditch inlet at the southeast corner of Gore Road and Highway 15.

Each storage control was developed using a the modified rational method calculation under the 100-year peak flow condition recognizing the post and pre development site conditions.

The oversized storage pipe sizing is contained within the following Table 5-4. All sizing calculations are included within Appendix D.

Storm Sewer	Existing Peak Flow (m³/s)	Proposed Uncontrolled Peak Flow (m³/s)	Proposed Controlled Peak Flow (m³/s)	Storage Volume Required (m ³)
STM703	0.09	0.12	0.09	16.0
STM706	0.19	0.23	0.19	23.0

Table 5-4 - Oversized Storage Pipe Sizing

5.5.1.3 West Segment Enhanced Grass Swales

The west segment flow controls have been developed to recognize the identified peak flow control rates and associated volumes. The west segment grass swales offer the required linear volume during the 100-year storm event with the peak flow controlled to the pre development plus bridge level.

5.6 Outlet Structure

The outlets from both the west and east approaches are as follows:

- West Segment 450 mm storm sewer outfall from the proposed OGS2 unit into a level spreader
 - The level spreader has been constructed to dissipate runoff velocity that is discharged from the enhanced grass swales into the Cataraqui River.
- East Segment 450 mm storm sewer outfall from the proposed OGS1 out of the dry pond facility into the channel flow into the Cataraqui River.

6. Criteria Summary

The following is a summary of the specific elements designed within the K3C project to satisfy the drainage criteria and SWM objectives:

Quantity Control

- enhanced grassed swales with a 2 m wide, 2.5:1 side slopes will be installed to safely convey and control the outflow from the west and east approach;
- a dry pond facility has been sized to provide quantity control for the east segment approach roads
- two oversized storage pipes have been installed to satisfy the peak flow control at the two key Highway 15 outfalls.

Quality Control

• will follow a treatment train approach with the measures including OGS units, enhanced grass swales, and check dams for erosion protection.

Erosion Control

• Rip rap erosion protection has been designed at all storm sewer lead outfalls to the enhanced grass swales and outfalls.

Drainage Design – Minor System

• new stormwater piping (1:10 year event via to low point on the approach road conveys runoff from the approach and bridge to the enhanced grass swales along both the east and west approach roads as well as Highway 15;

Drainage Design – Major System

- from the low point, runoff is piped to the enhanced grass swales whereas major event flows will flow overland to the east towards the Cataraqui River
- bridge drainage joins the approach drainage also at the low point

7. Conclusions

The proposed bridge and associated approach roadway infrastructure will impact the local drainage conditions such that the impervious levels will be increase. In order to satisfy the identified water quantity, quality, and erosion protection objectives as well as the minor and major system drainage design conditions a stormwater management design is required to safely handle all runoff. The following are the key conclusions drawn from the K3C project:

- All key drainage criteria and stormwater management objectives have been developed for the K3C project.
- The existing site drainage patterns for the area have been clearly illustrated for both the east and west approaches.
- The hydrologic modelling has been executed using PCSWMM software recognizing the existing and proposed site conditions.
 - All hydraulic components of the drainage network and SWM measures were modelled within the PCSWMM model.
- The proposed design conditions including the bridge and roadway improvements were illustrated with the following elements considered:
 - SWM design developed to provide water quantity control for the east and west approaches through oversized storage pipes, a dry pond facility, and enhanced grass swales
 - Water quality control has been developed through the use of OGS units, permanent erosion control measures, and enhanced grass swales,
 - The minor system has been developed to provide safe conveyance of the required runoff
 - The major system has been developed to illustrate the drainage conditions during such storm events.
- All site outfalls were documented with implications for erosion control and release rates recognized.

David Jackson, P.Eng. DJ:dj

INTEGRATED PROJECT DELIVERY TEAM:

					DESIGN COMPANY:
No.	DATE	REVISIONS	BY	CHECKED	

DRAWING	NO.		
1			

SHEET NO.

METRIC

SWM REPORT

PRE-DEVELOPMENT CONDITIONS

CHECKED: DATE: 19-02-19

DRAWN:

DJ

MD

SCALE: N.T.S.

REVISION

A: WEST SIDE

B: EAST SIDE

taWING NAME: Figure 2 - Post-Development Flow Conditions.dwg VED BY: jack857638 SAVE DATE: 2/19/2019 11:53 AM PLOT DATE: 2/19/20

1						DESIGN COMPANY:
	No.	DATE	REVISIONS	BY	CHECKED	

METRIC

KINGSTON	THIRD	CROSSING

DRAWING NO.

2

SWM REPORT

POST-DEVELOPMENT CONDITIONS

CHECKED: MD

DESIGN:

EM

DRAWN:

DJ

DATE: 19-02-19 SCALE: N.T.S. SHEET NO. REVISION

NAME: H357883–20–260–WIP0–0019.dwg Y: WEST867507 SAVE DATE: 2/12/2019 12:11 PM PLOT DATE: 2/15/

WP	DENOTES	WOR	KING	FOINT
C/L	DENOTES	CENT	REL	INE
T/A	DENOTES	TOP	OF	ASPHALT
T/FTG.	DENOTES	TOP	OF	FOOTING
T/CAISSON	DENOTES	TOP	OF	CAISSON
	DENOTES	NOIS	FΒ	ARRIFR

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

**************************************	ages 2 chments 4 								

Name	Data Source		D T	ata 'ype	Recordin Interval	g			
KNGSTN-PS_CHI_3hr KNGSTN-PS_SCS_24h	_100 KNGSTN-PS_CH hr_100 KNGSTN-PS_S	II_3hr_100 SCS_24hr_100		INTENSITY	7 10 min 77 15 mi	n.			
**************************************	**** hary **** 1.43 4.21 20.46	Width % 	Imperv 25.00 6.00	*Slope 0.5000 3.0000	Rain Gage KNGSTN-PS KNGSTN-PS	_SCS_24h	Out r_100 H r_100 F	let leadwall astBank	
West_Upstream	4.03	134.23	33.00	5.0000	KNGSTN-PS	_SCS_24h	r_100 W	lestBank	
**************************************		Inve	rt	Max. I	Ponded	External			
EastBank WestBank 115 116 117 118 Ditch	OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	74. 74. 92. 92. 89. 87. 93.	V 77 61 25 66 28 50	0.30 0.00 3.02 3.45 3.84 4.27 2.50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				
Headwall ************ Link Summary ************** Name	STORAGE From Node	86. To Node	99 Ty	4.56 pe	0.0 Leng	th %S	lope Rc	oughness	
C2 C3 C4 C5 C6 DitchInlet	115 116 117 118 Headwall Ditch	116 117 118 Headwall EastBank 115		NDUIT NDUIT NDUIT NDUIT NDUIT NDUIT TLET	16 99 84 4 200	.0 2. .9 2. .8 2. .6 6. .1 6.	6194 5724 8067 3307 1174	0.0130 0.0130 0.0130 0.0130 0.0130 0.0100	
**************************************	**** mary ****	- 11	- 11				_ 1	-	
Conduit	Shape	Full Depth	Full Area	Rad.	Max. Width	No. of Barrels	Ful Flc	. ⊥)W	
C2 C3 C4 C5 C6	CIRCULAR CIRCULAR CIRCULAR CIRCULAR TRAPEZOIDAL	0.60 0.60 0.60 0.60 0.30	0.28 0.28 0.28 0.28 0.57	0.15 0.15 0.15 0.15 0.20	0.60 0.60 0.60 0.60 2.80	1 1 1 1	0.9 0.9 1.0 1.5 4.7	9 8 3 5 7	
<pre>NOTE: The summary based on results not just on results not just on results analysis Options ************************************</pre>	/ statistics disp found at every cc lts from each repc CMS NO 	UMBER 2000 00:00: 2000 00:00: 2000 00:00: 00	******** time st step. *********	**** ep, ****					

Routing Time Step Variable Time Step . Maximum Trials Number of Threads	1.0 YES 8 1	0 sec			
**************************************	****** inuity ******	Volum hectare- 2.92 0.00 1.14 1.63 0.14 -0.08	e m 4 0 5 7 5 5 5 5	Depth mm 97.100 0.000 38.021 54.340 4.822	
<pre>************************************</pre>	****** ity ******	Volum hectare 0.000 1.63 0.000 0.000 0.000 0.000 0.000 0.000 0.000	e 10 7 0 0 0 0 7 0 0 0 0 0 3 2	Volume 0^6 ltr 0.000 16.366 0.000 0.000 16.366 0.000 0.000 0.000 0.000 0.000	
Continuity Error (%) ************************************	**************************************	-0.03	8	0.032	
All links are stable ************************************	****** mmary ***** : : ate : er Step : ig :	0.00 0.88 1.00 2.00 0.00 0.00	sec sec sec		
Subcatchment Runoff & **********************************	Summary ******			Total	Total
Subcatchment	Precij	p Rui m	non mm	Evap	Infil
East_Approach East_Bank East_Upstream West_Upstream	97.1 97.1 97.1 97.1 97.1	0 0 0 0 0 0 0 0 0 0	.00 .00 .00 .00	0.00 0.00 0.00 0.00 0.00	52.90 64.08 28.67 53.01

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Occurr days hr
EastBank WestBank	OUTFALL OUTFALL	0.20	0.20	74.97 74.61	000

lbcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff CMS	Runoff Coeff
ast_Approach ast_Bank ast_Upstream est_Upstream	97.10 97.10 97.10 97.10 97.10	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	52.90 64.08 28.67 53.01	42.99 31.79 62.02 42.91	0.61 1.34 12.69 1.73	0.12 0.14 1.46 0.43	0.443 0.327 0.639 0.442
est_Upstream	97.10	0.00	0.00	53.01	42.91	1.73	0.43	0

Node	Type	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max rrence hr:min	Reported Max Depth Meters
	-15-						
EastBank WestBank 115 116	OUTFALL OUTFALL STORAGE STORAGE	0.20 0.00 0.08 0.08	0.20 0.00 0.92 0.92	74.97 74.61 93.63 93.17	0 0 0 0	00:00 00:00 12:03 12:03	0.06 0.00 0.28 0.28
117	STORAGE	0.08	0.55	90.21	0	11:58	0.17
118	STORAGE	0.07	0.36	87.64	0	11:58	0.11
Ditch	STORAGE	0.06	0.63	94.13	0	12:03	0.19
Headwall	STORAGE	0.02	0.14	87.13	0	11:58	0.04

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	Time o Occur: days h	f Max rence r:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
EastBank	OUTFALL	0.138	1.289	0	11:58	1.34	14.6	0.000
WestBank	OUTFALL	0.427	0.427	0	12:00	1.73	1.73	0.000
115	STORAGE	0.000	1.156	0	11:58	0	12.7	0.007
116	STORAGE	0.000	1.137	0	11:58	0	12.7	0.006

Cataraqui River, Third Crossing, Kingston, Ontario – Pre-Development Conditions									
117 118 Ditch	STORAGE STORAGE STORAGE	0.000 0.000 1.460	1.058 1.052 1.460	0 0 0	11:57 11:58 12:00	0	12.7 12.7 12.7	-0.013 0.000 -0.000	

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
115	STORAGE	0.24	0.320	2.100
116	STORAGE	0.22	0.276	2.534
Ditch	STORAGE	72.00	0.634	1.866

No nodes were flooded.

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m3	Full	Loss	Loss	1000 m3	Full	days hr:min	CMS
115 116 117 118 Ditch Headwall	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.048\\ 0.000\\ \end{array}$	3 2 2 2 3 0	0 0 0 0 0	0 0 0 0 0 0 0	$\begin{array}{c} 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.475\\ 0.000\\ \end{array}$	30 27 14 8 25 3	0 12:03 0 12:03 0 11:58 0 11:58 0 12:03 0 12:03 0 11:58	1.137 1.058 1.052 1.050 1.156 1.163

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CMS	CMS	10^6 ltr
EastBank	91.99	0.091	1.289	14.638
WestBank	43.74	0.023	0.427	1.728
System	67.86	0.114	1.713	16.366

Link Flow Summary **********

Link	Туре	Maximum Flow CMS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C2 C3 C4 C5 C6 DitchInlet	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT DUMMY	1.137 1.058 1.052 1.050 1.163 1.156	0 11:58 0 11:57 0 11:58 0 11:58 0 11:58 0 11:58 0 11:58	$\begin{array}{r} 4.02\\ 3.96\\ 4.73\\ 9.35\\ 4.45\end{array}$	1.14 1.07 1.02 0.68 0.24	1.00 1.00 0.76 0.42 0.57

Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fracti Down Dry	ion of Sub Crit	Time Sup Crit	in Flow Up Crit	v Class Down Crit	Norm Ltd	Inlet Ctrl
C2 C3 C4 C5 C6	1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.00 0.00 0.02	0.00 0.00 0.00 0.00 0.00 0.00	0.01 0.00 0.05 0.03 0.83	0.00 0.00 0.93 0.95 0.16	0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.98 0.00 0.00 0.00	0.00 0.00 0.06 0.02 0.98	0.00 0.00 0.00 0.00 0.00 0.00

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
C2	0.24	0.24	0.25	0.23	0.22
C3	0.23	0.23	0.26	0.26	0.23
C4	0.01	0.01	0.01	0.18	0.01

Analysis begun on: Wed Aug 03 11:03:02 2016 Analysis ended on: Wed Aug 03 11:03:06 2016 Total elapsed time: 00:00:04

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.011) _____ WARNING 03: negative offset ignored for Link 1 1 WARNING 03: negative offset ignored for Link 1 2 WARNING 03: negative offset ignored for Link 1 2 WARNING 03: negative offset ignored for Link 2_3 WARNING 03: negative offset ignored for Link 7 WARNING 03: negative offset ignored for Link C5 WARNING 02: maximum depth increased for Node 1 WARNING 02: maximum depth increased for Node 10 WARNING 02: maximum depth increased for Node EGS1 WARNING 02: maximum depth increased for Node EGS2-CVI WARNING 02: maximum depth increased for Node EGS3-CVO WARNING 02: maximum depth increased for Node EGS4-DI * * * * * * * * * * * * Element Count * * * * * * * * * * * * Number of rain gages 1 Number of subcatchments ... 18 Number of nodes 38 Number of links 37 Number of pollutants 0 Number of land uses 0 * * * * * * * * * * * * * * * * Raingage Summary * * * * * * * * * * * * * * * * * Data Recording Type Interval Data Source Name _____ KNGSTN-PS_SCS_24hr_100 KNGSTN-PS_SCS_24hr_100 INTENSITY 15 min. Subcatchment Summary Area Width %Imperv %Slope Rain Gage Outlet Name NumeAledWidenSimplerSolopeKunn ougeOutletBridge_East0.1412.35100.001.0000KNGSTN-PS_SCS_24hr_100East_N_LowBridge_West1.1612.13100.001.0000KNGSTN-PS_SCS_24hr_100East_N_LowEast_Bank3.3086.9713.073.0000KNGSTN-PS_SCS_24hr_100EastBankMontreal1.9463.1352.612.0000KNGSTN-PS_SCS_24hr_100EastBankS120.3736.7311.550.5000KNGSTN-PS_SCS_24hr_100EGS1S19_10.1634.2164.730.5000KNGSTN-PS_SCS_24hr_100117S19_21.2634.2164.730.5000KNGSTN-PS_SCS_24hr_100117S2_10.6035.0243.002.0000KNGSTN-PS_SCS_24hr_1001S2_30.0235.0243.002.0000KNGSTN-PS_SCS_24hr_1001S30.8119.3460.260.5000KNGSTN-PS_SCS_24hr_10014S30.0331.6464.002.0000KNGSTN-PS_SCS_24hr_10014S4_10.2631.6464.002.0000KNGSTN-PS_SCS_24hr_10014S4_20.4831.6464.002.0000KNGSTN-PS_SCS_24hr_10015S4_10.2631.6464.002.0000KNGSTN-PS_SCS_24hr_10015S4_10.2631.6464.002.0000KNGSTN-PS_SCS_24hr_10015S4_10.2631.6464.002.0000 _____

* * * * * * * * * * *

Node Summary

* * * * * * * * * * * *

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow	
1	JUNCTION	 80 39	1 65			
10	JUNCTION	76.25	1.65	0.0		
11	JUNCTION	76.00	2.00	0.0		
12	JUNCTION	77.30	2.70	0.0		
13	JUNCTION	79.00	1.90	0.0		
14	JUNCTION	79.42	1.83	0.0		
15	JUNCTION	79.59	1.65	0.0		
2	JUNCTION	78.90	2.00	0.0		
3	JUNCTION	88.30	2.20	0.0		
4	JUNCTION	77.00	6.20	0.0		
5	JUNCTION	88.00	2.50	0.0		
6	JUNCTION	78.00	2.00	0.0		
7	JUNCTION	88.60	1.50	0.0		
8	JUNCTION	75.30	2.04	0.0		
9	JUNCTION	75.17	2.17	0.0		
CB1	JUNCTION	82.40	1.50	0.0		
CB2	JUNCTION	80.53	1.58	0.0		
CB4	JUNCTION	79.27	1.64	0.0		
EastBank	JUNCTION	75.00	0.50	0.0		
EGS1	JUNCTION	83.50	1.65	0.0		
EGS2-CVI	JUNCTION	80.30	1.65	0.0		
EGS3-CVO	JUNCTION	79.80	1.80	0.0		
EGS4-DI	JUNCTION	78.80	1.80	0.0		
EGS5-DO	JUNCTION	78.35	1.65	0.0		
Headwall	JUNCTION	83.02	1.80	0.0		
OF1	OUTFALL	83.40	0.00	0.0		
River_East	OUTFALL	74.77	0.50	0.0		
River_West	OUTFALL	75.50	1.00	0.0		
115	STORAGE	92.71	3.02	0.0		
116	STORAGE	92.25	3.45	0.0		
117	STORAGE	89.66	3.84	0.0		
118	STORAGE	87.28	4.27	0.0		
Ditch	STORAGE	93.50	1.50	0.0		
East_N_Low	STORAGE	91.00	0.65	0.0		
East_S_Low	STORAGE	91.00	0.65	0.0		
SU1	STORAGE	83.50	2.15	0.0		
West_S_Low	STORAGE	81.00	0.65	0.0		
WestBank	STORAGE	75.60	2.15	0.0		
* * * * * * * * * * *						
Link Summary						
Name Fr	om Node	To Node	Туре	Leng	gth %Slope	Roughness
 1 1 л		 13		 ، د		0 0100
1 1 EC	Q1	1 J	CONDUTT	100	2,0 0.000 2,0 0.000	0.0100
1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1) T	FCS2-CVT	CONDUIT	100	2.0720 2.6 2.5572	0.0350
$\frac{1}{1}$ $\frac{2}{3}$ $\frac{1}{3}$		5	CONDUIT	28	R 6 1 0477	0.0330
10 10		J WestBank	CONDUIT	21	1 3 1 1754	0.0130
2 15		14	CONDULT	1(0 9532	0 0100
2 1 FG	S3-CVO	2	CONDUTT	61	.3 1 4677	0 0350
2 2 2 2		EGS4-DT	CONDUTT	-	7.5 1 3358	0 0350
2 3 He	adwall	6	CONDUTT	7 6	5.4 6 5825	0 0100
2 4 5		4	CONDUITT	7 5	5.5 14.7345	0.0280
2 6 11		8	CONDUTT	22	2.2 3.1503	0.0350
2 7 6		12	CONDUIT	16	5.3 4.3082	0.0130
2 9 4		11	CONDUIT	53	3.7 1.8632	0.0280
3 CB	1	CB2	CONDUIT	7 ().7 2.5478	0.0130
4 CB	2	1	CONDUIT	22	2.0 0.5993	0.0100

5 1	CB4	13	CONDUIT	11.3	1.0170	0.0130
5 2	13	2	CONDUIT	11.3	0.8873	0.0130
6	7	3	CONDUIT	57.3	0.5240	0.0350
7	EGS2-CVI	EGS3-CVO	CONDUIT	24.1	2.0776	0.0130
8	EGS4-DI	EGS5-DO	CONDUIT	22.2	2.0240	0.0130
8 2	EGS5-DO	10	CONDUIT	53.5	3.9296	0.0350
9	8	9	CONDUIT	8.5	1.5858	0.0130
C1	WestBank	River West	CONDUIT	13.9	0.7198	0.0400
C2	115	116 —	CONDUIT	16.0	2.6190	0.0130
С3	116	117	CONDUIT	99.9	2.5724	0.0130
C 4	117	118	CONDUIT	78.9	3.0188	0.0130
С5	118	Headwall	CONDUIT	81.4	5.2434	0.0130
C6 3	9	EastBank	CONDUIT	28.2	0.5891	0.0350
C7	EastBank	River_East	CONDUIT	7.8	2.9349	0.0400
C8	East_N_Low	11	CONDUIT	19.6	113.1651	0.0100
2 8	12	EastBank	WEIR			
C11	West_S_Low	WestBank	WEIR			
С9	East_S_Low	EastBank	WEIR			
W1	East_S_Low	East_N_Low	WEIR			
W2	West_S_Low	СВ4	WEIR			
WЗ	SU1	OF1	WEIR			
DitchInlet	Ditch	115	OUTLET			

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
1	CIRCULAR	0.53	0.22	0.13	0.53	1	0.52
1 1	TRAPEZOIDAL	1.65	10.64	0.89	11.40	1	47.75
1 2	TRAPEZOIDAL	1.65	10.64	0.89	11.40	1	45.05
1 3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.10
10	CIRCULAR	0.40	0.13	0.10	0.40	1	0.23
2	CIRCULAR	0.45	0.16	0.11	0.45	1	0.36
2 1	TRAPEZOIDAL	1.80	12.42	0.96	12.30	1	41.96
2 2	TRAPEZOIDAL	1.80	12.42	0.96	12.30	1	40.03
2_3	TRAPEZOIDAL	1.50	9.00	0.82	10.50	1	202.19
2_4	TRAPEZOIDAL	1.00	4.50	0.58	7.50	1	42.67
2_6	TRAPEZOIDAL	1.50	9.00	0.82	10.50	1	39.96
2_7	CIRCULAR	0.53	0.22	0.13	0.53	1	0.89
2_9	TRAPEZOIDAL	1.00	4.50	0.58	7.50	1	15.17
3	CIRCULAR	0.30	0.07	0.07	0.30	1	0.15
4	CIRCULAR	0.38	0.11	0.09	0.38	1	0.18
5_1	CIRCULAR	0.45	0.16	0.11	0.45	1	0.29
5_2	CIRCULAR	0.60	0.28	0.15	0.60	1	0.58
6	TRAPEZOIDAL	1.50	9.00	0.82	10.50	1	16.30
7	CIRCULAR	0.38	0.11	0.09	0.38	1	0.25
8	CIRCULAR	0.45	0.16	0.11	0.45	1	0.41
8_2	TRAPEZOIDAL	1.65	10.64	0.89	11.40	1	55.85
9	CIRCULAR	0.23	0.04	0.06	0.23	1	0.06
C1	RECT_OPEN	1.00	10.00	0.83	10.00	1	18.79
C2	CIRCULAR	0.60	0.28	0.15	0.60	1	0.99
C3	CIRCULAR	0.60	0.28	0.15	0.60	1	0.98
C 4	CIRCULAR	0.60	0.28	0.15	0.60	1	1.07
C5	CIRCULAR	0.60	0.28	0.15	0.60	1	1.41
C6_3	TRAPEZOIDAL	0.50	1.25	0.30	4.00	1	1.23
C7	TRAPEZOIDAL	0.50	1.25	0.30	4.00	1	2.40
C8	CIRCULAR	1.00	0.79	0.25	1.00	1	33.16

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. **** * * * * * * * * * * * * * * * * Analysis Options * * * * * * * * * * * * * * * * Flow Units CMS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method CURVE NUMBER Flow Routing Method DYNWA $\overline{\rm VE}$ Starting Date 01/01/2000 00:00:00 Ending Date 01/04/2000 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Wet Time Step 00:05:00 Dry Time Step 00:05:00 Routing Time Step 1.00 sec Variable Time Step YES Maximum Trials 10 Number of Threads 8 Head Tolerance 0.001500 m Runoff Quantity Continuity hectare-m Depth mm -----_____ 3.277 97.100 Total Precipitation 0.000 1.124 2.008 Evaporation Loss 0.000 Infiltration Loss 33.294 Surface Runoff 59.495 0.149 Final Storage 4.426 -0.118 Continuity Error (%) Volume Volume Flow Routing Continuity hectare-m 10^6 ltr _____ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume 0.034 Continuity Error (%) Time-Step Critical Elements **** None

Routing Time Step Summary

		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
Minimum	Time S	tep	:	0.11	sec
Average	Time S	tep	:	1.00	sec
Maximum	Time S	tep	:	1.00	sec
Percent	in Ste	ady State	:	0.00	
Average	Iterat	ions per Ste	ep :	2.01	
Percent	Not Co	nverging	:	0.09	

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Total Runoff 10^6 ltr	Pea Runof CM
Bridge East	97.10	0.00	0.00	0.00	95.96	0.13	0.0
Bridge West	97.10	0.00	0.00	0.00	95.64	1.11	0.2
BridgeApproach	97.10	0.00	0.00	0.00	95.98	0.09	0.0
East Bank	97.10	0.00	0.00	57.94	37.93	1.25	0.0
Montreal	97.10	0.00	0.00	35.79	60.13	1.17	0.3
S1	97.10	0.00	0.00	28.79	61.95	12.57	1.4
S12	97.10	0.00	0.00	70.76	25.11	0.09	0.0
S19 1	97.10	0.00	0.00	24.57	71.43	0.11	0.0
s19 ⁻ 2	97.10	0.00	0.00	25.31	70.51	0.89	0.2
s2 1	97.10	0.00	0.00	44.96	50.97	0.30	0.0
s2 ² 2	97.10	0.00	0.00	44.74	51.19	0.18	0.0
s2 ³	97.10	0.00	0.00	44.22	51.79	0.01	0.0
s3 [—]	97.10	0.00	0.00	25.49	70.33	0.57	0.1
S4 1	97.10	0.00	0.00	28.06	67.92	0.18	0.0
s4 ²	97.10	0.00	0.00	28.19	67.80	0.32	0.1
s4 ³	97.10	0.00	0.00	27.85	68.13	0.02	0.0
s9 [–]	97.10	0.00	0.00	67.88	28.01	0.14	0.0
West_Upstream	97.10	0.00	0.00	48.53	47.40	0.96	0.2

* * * * * * * * * * * * * * * * * *

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max arrence hr:min	Reported Max Depth Meters
1	JUNCTION	0.01	0.73	81.12	0	12:03	0.72
10	JUNCTION	0.04	1.38	77.63	0	12:16	1.38
11	JUNCTION	0.02	0.75	76.75	0	12:19	0.74
12	JUNCTION	0.02	0.26	77.56	0	12:09	0.26
13	JUNCTION	0.02	0.71	79.71	0	12:04	0.70
14	JUNCTION	0.02	0.27	79.68	0	12:03	0.27
15	JUNCTION	0.00	0.10	79.69	0	12:03	0.10

2	JUNCTION	0.02	0.80	79.70	0	12:05	0.80
3	JUNCTION	0.03	0.60	88.90	0	12:05	0.60
4	JUNCTION	0.01	0.09	77.09	0	12:04	0.09
5	JUNCTION	0.00	0.05	88.05	0	12:03	0.05
6	JUNCTION	0.07	0.83	78.83	0	12:09	0.83
7	JUNCTION	0.00	0.30	88.90	0	12:05	0.30
8	JUNCTION	0.05	1.48	76.78	0	12:19	1.48
9	JUNCTION	0.02	0.23	75.40	0	12:10	0.23
CB1	JUNCTION	0.00	0.00	82.40	0	00:00	0.00
CB2	JUNCTION	0.01	0.62	81.14	0	12:02	0.61
CB4	JUNCTION	0.01	0.44	79.70	0	12:05	0.42
EastBank	JUNCTION	0.05	0.38	75.38	0	12:10	0.38
EGS1	JUNCTION	0.01	0.15	83.65	0	12:00	0.14
EGS2-CVI	JUNCTION	0.03	0.91	81.21	0	12:02	0.85
EGS3-CVO	JUNCTION	0.01	0.18	79.98	0	12:03	0.18
EGS4-DI	JUNCTION	0.03	1.02	79.82	0	12:06	0.99
EGS5-DO	JUNCTION	0.01	0.18	78.53	0	12:03	0.18
Headwall	JUNCTION	0.01	0.11	83.13	0	12:02	0.11
OF1	OUTFALL	0.00	0.00	83.40	0	00:00	0.00
River_East	OUTFALL	0.05	0.38	75.15	0	12:10	0.38
River West	OUTFALL	0.00	0.07	75.57	0	12:00	0.07
115 -	STORAGE	0.07	1.44	94.15	0	12:03	1.39
116	STORAGE	0.07	1.28	93.53	0	12:01	1.27
117	STORAGE	0.06	0.55	90.21	0	12:01	0.55
118	STORAGE	0.06	0.50	87.78	0	12:02	0.50
Ditch	STORAGE	0.05	0.61	94.11	0	12:02	0.61
East_N_Low	STORAGE	0.00	0.06	91.06	0	11:57	0.06
East_S_Low	STORAGE	0.11	0.17	91.17	0	12:00	0.16
SU1	STORAGE	0.00	0.00	83.50	0	00:00	0.00
West_S_Low	STORAGE	0.00	0.00	81.00	0	00:00	0.00
WestBank	STORAGE	0.01	0.14	75.74	0	12:00	0.14

* * * * * * * * * * * * * * * * * * * *

Node Inflow Summary

* * * * * * * * * * * * * * * * * * *

Node	Туре	Maximum Lateral Inflow CMS	Maximum Total Inflow CMS	Time Occu days	of Max urrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Fl Balan Err Perce
1	JUNCTION	0.083	0.976	0	12:02	0.305	1.83	0.0
10	JUNCTION	0.000	0.566	0	12:04	0	3.38	0.0
11	JUNCTION	0.000	1.030	0	12:08	0	2.43	-0.0
12	JUNCTION	0.000	1.075	0	12:09	0	12.7	0.0
13	JUNCTION	0.000	0.317	0	12:00	0	1.31	-0.0
14	JUNCTION	0.255	0.261	0	11:59	1.12	1.13	0.0
15	JUNCTION	0.007	0.007	0	12:00	0.0173	0.0173	0.0
2	JUNCTION	0.050	1.740	0	12:07	0.183	3.54	-0.1
3	JUNCTION	0.232	0.232	0	12:00	0.886	0.911	-0.0
4	JUNCTION	0.000	0.143	0	12:03	0	1.03	-0.0
5	JUNCTION	0.017	0.143	0	12:02	0.14	1.03	-0.0
6	JUNCTION	0.000	1.133	0	12:02	0	12.7	0.0
7	JUNCTION	0.000	0.047	0	11:59	0	0.0252	0.7
8	JUNCTION	0.000	1.190	0	12:10	0	2.43	0.0
9	JUNCTION	0.000	0.182	0	12:14	0	1.8	-0.0
CB1	JUNCTION	0.000	0.000	0	00:00	0	0	0.0
CB2	JUNCTION	0.099	0.099	0	12:00	0.323	0.323	-0.0
CB4	JUNCTION	0.057	0.057	0	12:00	0.178	0.178	0.0
EastBank	JUNCTION	0.089	1.339	0	12:09	1.25	15.7	0.0
EGS1	JUNCTION	0.326	0.326	0	12:00	1.17	1.17	-0.2
EGS2-CVI	JUNCTION	0.000	1.335	0	12:02	0	1.83	0.2

EGS3-CVO	JUNCTION	0.000	0.343	0	12:02	0	1.79	-0.0
EGS4-DI	JUNCTION	0.000	2.328	0	12:08	0	3.55	0.3
EGS5-DO	JUNCTION	0.014	0.581	0	12:04	0.0922	3.37	-0.0
Headwall	JUNCTION	0.000	1.134	0	12:02	0	12.7	-0.0
OF1	OUTFALL	0.000	0.000	0	00:00	0	0	0.0
River East	OUTFALL	0.000	1.339	0	12:10	0	15.7	0.0
River West	OUTFALL	0.000	0.630	0	12:00	0	4.33	0.0
115 _	STORAGE	0.000	1.442	0	12:02	0	12.6	0.0
116	STORAGE	0.000	1.227	0	11:59	0	12.6	-0.0
117	STORAGE	0.037	1.135	0	12:01	0.113	12.7	0.0
118	STORAGE	0.000	1.134	0	12:02	0	12.7	-0.0
Ditch	STORAGE	1.474	1.474	0	12:00	12.6	12.6	-0.0
East N Low	STORAGE	0.075	0.197	0	12:00	0.22	0.779	0.0
East S Low	STORAGE	0.140	0.140	0	12:00	0.567	0.567	-0.0
SU1	STORAGE	0.000	0.000	0	00:00	0	0	0.0
West S Low	STORAGE	0.000	0.000	0	00:00	0	0	0.0
WestBank	STORAGE	0.217	0.632	0	12:00	0.955	4.33	0.0

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
13	JUNCTION	0.18	0.109	1.191
CB2	JUNCTION	0.25	0.241	0.959

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time o Occur days h	of Max crence hr:min	Maxi Outf
115	0.000	2	0	0	0.002	48	0	12:03	1.
116	0.000	2	0	0	0.001	37	0	12:01	1.
117	0.000	2	0	0	0.001	14	0	12:01	1.
118	0.000	1	0	0	0.001	12	0	12:02	1.
Ditch	0.034	3	0	0	0.460	41	0	12:02	1.
East N Low	0.000	0	0	0	0.000	2	0	11:57	Ο.
East S Low	0.000	7	0	0	0.000	16	0	12:00	Ο.
SU1	0.000	0	0	0	0.000	0	0	00:00	Ο.
West S Low	0.000	0	0	0	0.000	0	0	00:00	Ο.
WestBank	0.000	0	0	0	0.003	6	0	12:00	0.

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
OF1	0.00	0.000	0.000	0.000
River East	89.23	0.069	1.339	15.742
River_West	59.36	0.029	0.630	4.330
System	49.53	0.098	1.900	20.072

Link	Туре	Maximum Flow CMS	Time Occu days	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
1	CONDUIT	0.260	0	12:00	2.06	0.50	0.76
1 1	CONDUIT	0.323	0	12:00	0.67	0.01	0.26
1_2	CONDUIT	1.335	0	12:02	0.91	0.03	0.49
1_3	CONDUIT	0.130	0	12:05	3.04	1.31	0.58
10	CONDUIT	0.501	0	12:16	3.98	2.22	1.00
2	CONDUIT	0.009	0	11:58	0.52	0.02	0.32
2_1	CONDUIT	0.339	0	12:03	0.55	0.01	0.27
2_2	CONDUIT	2.328	0	12:08	0.94	0.06	0.49
2_3	CONDUIT	1.133	0	12:02	1.55	0.01	0.31
2_4	CONDUIT	0.143	0	12:03	1.19	0.00	0.07
2_6	CONDUIT	1.190	0	12:10	0.30	0.03	0.72
2_7	CONDUIT	1.075	0	12:09	6.28	1.20	0.74
2_9	CONDUIT	0.143	0	12:04	0.59	0.01	0.42
3	CONDUIT	0.000	0	00:00	0.00	0.00	0.50
4	CONDUIT	0.099	0	12:00	1.35	0.56	1.00
5_1	CONDUIT	0.059	0	12:00	1.36	0.21	0.99
5_2	CONDUIT	0.317	0	12:00	1.65	0.55	1.00
6	CONDUIT	0.047	0	11 : 59	0.10	0.00	0.30
7	CONDUIT	0.343	0	12:02	3.93	1.36	0.74
8	CONDUIT	0.578	0	12:05	4.85	1.42	0.70
8_2	CONDUIT	0.566	0	12:04	0.59	0.01	0.47
9	CONDUIT	0.182	0	12:14	4.70	3.22	1.00
C1	CONDUIT	0.630	0	12:00	0.60	0.03	0.11
C2	CONDUIT	1.227	0	11 : 59	4.34	1.23	1.00
C3	CONDUIT	1.107	0	12:01	4.12	1.12	1.00
C 4	CONDUIT	1.134	0	12:02	4.39	1.06	0.87
C5	CONDUIT	1.134	0	12:02	7.89	0.81	0.51
C6_3	CONDUIT	0.190	0	12:16	0.44	0.15	0.61
C7	CONDUIT	1.339	0	12:10	1.65	0.56	0.76
C8	CONDUIT	0.197	0	12:00	10.38	0.01	0.24
2_8	WEIR	1.075	0	12:09			0.51
C11	WEIR	0.000	0	00:00			0.00
С9	WEIR	0.017	0	12:00			0.03
Wl	WEIR	0.122	0	12:00			0.10
W2	WEIR	0.000	0	00:00			0.00
WЗ	WEIR	0.000	0	00:00			0.00
DitchInlet	DUMMY	1.442	0	12:02			

Ad	justed			Fract	ion of	Time	in Flow	w Clas	s	
/	Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
1	1.00	0.02	0.00	0.00	0.01	0.00	0.00	0.97	0.00	0.00
1_1	1.00	0.02	0.04	0.00	0.94	0.00	0.00	0.00	0.95	0.00
1_2	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.97	0.00
1_3	1.00	0.02	0.00	0.00	0.33	0.65	0.00	0.00	0.00	0.00
10	1.00	0.02	0.00	0.00	0.00	0.00	0.00	0.98	0.00	0.00
2	1.00	0.02	0.00	0.00	0.02	0.00	0.00	0.95	0.02	0.00
2_1	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.98	0.00
2_2	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.96	0.00
2_3	1.00	0.02	0.00	0.00	0.91	0.07	0.00	0.00	0.98	0.00
2_4	1.00	0.02	0.01	0.00	0.65	0.32	0.00	0.00	0.97	0.00
2_6	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.96	0.00
2_7	1.00	0.02	0.00	0.00	0.01	0.97	0.00	0.00	0.00	0.00
2_9	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.98	0.00
3	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	1.00	0.02	0.00	0.00	0.65	0.33	0.00	0.00	0.08	0.00
5 1	1.00	0.02	0.00	0.00	0.01	0.00	0.00	0.97	0.00	0.00
5 2	1.00	0.02	0.00	0.00	0.42	0.56	0.00	0.00	0.03	0.00
6	1.00	0.02	0.88	0.00	0.10	0.00	0.00	0.00	0.83	0.00
7	1.00	0.02	0.00	0.00	0.37	0.61	0.00	0.00	0.00	0.00
8	1.00	0.02	0.00	0.00	0.00	0.98	0.00	0.00	0.00	0.00
8 2	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.97	0.00
9	1.00	0.02	0.00	0.00	0.07	0.91	0.00	0.00	0.02	0.00
C1	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.00	0.00
C2	1.00	0.02	0.00	0.00	0.00	0.00	0.00	0.98	0.00	0.00
С3	1.00	0.02	0.00	0.00	0.00	0.00	0.00	0.98	0.00	0.00
C4	1.00	0.02	0.00	0.00	0.09	0.89	0.00	0.00	0.97	0.00
C5	1.00	0.02	0.00	0.00	0.06	0.92	0.00	0.00	0.02	0.00
C6 3	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.97	0.00
C7	1.00	0.02	0.00	0.00	0.96	0.02	0.00	0.00	0.01	0.00
C8	1.00	0.03	0.00	0.00	0.01	0.00	0.00	0.95	0.01	0.00
**************************************	*** ary ***									
						Hou	ırs	Ho	urs	
		Hou	rs Full	1		Above	e Full	Capa	city	
Conduit	Both E	nds Up	stream	Dnst	ream 	Norma	l Flow	Lim	ited	
1	0	.01	0.01		0.18	0.	01	0	.01	
1 3	0	.01	0.58		0.01	0.	63	0	.01	
10	0	.60	0.76		0.60	0.	80	0	.60	
2 7	0	.01	0.28		0.01	0.	33	0	.01	
4	0	.25	0.25		0.33	0.	01	0	.01	
5 1	0 0	.01	0.01		0.18	0.	01	n 0	.01	
5 2	0	.18	0.18		0.27	0.	01	0	.01	
7	0	.01	0.39		0.01	0.	41	0	.01	
8	0	.01	0.44		0.01	Ο.	50	0	.01	
9	0	.20	1.46		0.20	1.	56	0	.20	
C2	0	.23	0.23		0.24	Ο.	21	0	.19	
С3	0	.22	0.22		0.25	0.	25	0	.22	
C4	0	.01	0.01		0.01	0.	19	0	.01	

Analysis begun on: Fri Feb 01 09:47:15 2019 Analysis ended on: Fri Feb 01 09:47:25 2019

Total elapsed time: 00:00:10

Assesses storm sewer sizing and capacity to convey flows from sub-catchment:

A. Input Data (Apply for A <10 ha)

Specify "Design Storm" using drop-down (see "Rainfall Data" sheet for reference data) or manual IDF input; Set maximum inlet time and manning's roughness for pipe

Design Starry		IDF C	oeff	
Design Storm	Year	А	В	С
Return Period Storm	10	656.95	1.50	0.72
[Optional] User Defined				

B. Storm Sewer Calculation Sheet

At minimum, input "Length", "Diameter" and "Slope" of pipe

Sub-		MH Locatio	n			R	unoff Calculatio	ons				C	Designed Pipe	Characteristi	ics	
Catchment ID	From	То	Distance [m]	A [ha]	с	AxC	Total AxC	Tin [min]	i [mm/hr]	Q [cms]	Diameter [mm]	Slope [%]	Q_Full [cms]	V_Full [cms]	Pipe Time [min]	Capacity [%]
STM704 STM702 STM703	STM704 STM702 STM703	STM702 STM703 EXSTM	39.7 37.10	0.178 0.114	0.744 0.802	0.132 0.091	0.132 0.132	10.000 10.683	112.095 107.507	0.041 0.040	300 750	0.5 0.5	0.068 0.788	0.968 1.784	0.683 0.347	60% 5%
STM705 STM706 STM709	STM705 STM706 STM709	STM706 STM709 OF4	71.1 19.4 30	0.097 0.227 0.291	0.703 0.735 0.833	0.068 0.167 0.242	0.068 0.235 0.477	10.000 11.055 11.248	112.095 105.196 104.036	0.021 0.069 0.138	375 1350 375	0.5 0.2 1	0.124 2.389 0.176	1.124 1.669 1.589	1.055 0.194 0.315	17% 3% 79%

Assesses storm sewer sizing and capacity to convey flows from sub-catchment:

A. Input Data (Apply for A <10 ha)

Specify "Design Storm" using drop-down (see "Rainfall Data" sheet for reference data) or manual IDF input; Set maximum inlet time and manning's roughness for pipe

Design Channe		IDF C	oeff		Course Characteristics	In sect Malue	
Design Storm	Year	Α	В	С	Sewer Characteristics	input value	
Return Period Storm	10	656.95	1.50	0.72	Inlet Time [min]	10	MTO Drainage Manual
[Optional] User Defined					Manning's "n"	0.013	Concrete Pipe

B. Storm Sewer Calculation Sheet

At minimum, input "Length", "Diameter" and "Slope" of pipe

							EA	ST SEGME	ENT							
Sub-		MH Locatio	n			R	unoff Calculatio	ons				C	esigned Pipe	Characterist	cs	
Catchment ID	From	То	Distance [m]	A [ha]	с	A x C	Total AxC	Tin [min]	i [mm/hr]	Q [cms]	Diameter [mm]	Slope [%]	Q_Full [cms]	V_Full [cms]	Pipe Time [min]	Capacity [%]
STM100	STM100	STM101	37.9	0.071	0.900	0.064	0.064	10.000	112.095	0.020	300	2.74	0.160	2.267	0.279	12%
STM101	STM101	OUTFALL	7.4	0.044	0.900	0.040	0.104	10.279	110.169	0.032	375	0.81	0.158	1.430	0.086	20%
STM102	STM102	ExSTM	1.0	0.111	0.900	0.100	0.100	10.000	112.095	0.031	300	2	0.137	1.937	0.009	23%
STM103	STM103	ExSTM	5.5	0.060	0.900	0.054	0.054	10.000	112.095	0.017	300	2	0.137	1.937	0.047	12%
STM112	STM112	ExSTM	5.5	0.052	0.900	0.047	0.047	10.000	112.095	0.015	300	0.5	0.068	0.968	0.095	21%
STM107	STM107	OUTFALL	9.7	0.022	0.900	0.020	0.020	10.000	112.095	0.006	300	1.75	0.128	1.812	0.089	5%
STM104	STM104	STM105	11.1	0.097	0.900	0.087	0.087	10.000	112.095	0.027	300	2	0.137	1.937	0.096	20%
STM108	STM108	STM109	9.5 6.5	0.049	0.900	0.044	0.044	10.000	112.095	0.014	300	1.25	0.108	1.531	0.103	13%
STM110	ST14440	CTIMAL	5.5	0.344	0.000	0.000	0.220	10.000	112.005	0.000	200	4.25	0.100	1.537	0.004	62%
STM110 STM111	STM110 STM111	OUTFALL	7.7 6.5	0.244	0.900	0.220	0.361	10.000	112.095	0.112	300 450	1.25	0.324	2.038	0.084	34%

							WE	SISEGMI	=N I							
Sub-		MH Location	n			R	unoff Calculatio	ns				D	esigned Pipe	Characteristi	cs	
Catchment ID	From	То	Distance [m]	A [ha]	С	A x C	Total AxC	Tin [min]	i [mm/hr]	Q [cms]	Diameter [mm]	Slope [%]	Q_Full [cms]	V_Full [cms]	Pipe Time [min]	Capacity [%]
STM200	STM200	STM201	48.1	0.084	0.900	0.076	0.076	10.000	112.095	0.024	300	2.61	0.156	2.212	0.362	15%
STM201	STM201	STM202	13.9	0.048	0.900	0.043	0.118	10.362	109.605	0.036	375	1.52	0.216	1.959	0.118	17%
STM202	STM202	OUTFALL	7.5	0.108	0.900	0.097	0.216	10.481	108.821	0.065	375	2.49	0.277	2.508	0.050	24%
STM203	STM203	STM206	10.8	0.077	0.900	0.069	0.069	10.000	112.095	0.022	375	3.98	0.350	3.170	0.057	6%
STM204	STM204	STM205	8.3	0.973	0.900	0.876	0.876	10.000	112.095	0.273	600	0.6	0.476	1.684	0.082	57%
STM205	STM205	STM206	43.5	0.557	1.900	1.058	1.934	10.082	111.519	0.599	750	0.61	0.870	1.970	0.368	69%
STM206	STM206	OUTFALL	9.7	0.130	2.900	0.378	2.312	10.450	109.022	0.700	825	1.09	1.500	2.806	0.058	47%

INLET SPA Kingston 3rd	CING, SPRI I Crossing S	CAD FLOW DEI	PTH CALCUL	ATIONS																											
BRIDGE		K3C	SE	_															RAINFALL ST	TATION(S)											
SCENARIO				_		DATE					_								DESIGN SPRE	EAD		10 Year - 2.0 n	n; 100 Year - 3.	0 m							_
DESIGNED	BY	EM		_		DATE					-								CURB & GUT	TER TYPE		Concrete Barr	ier w/ Cutouts;	Gutter Type - '	Triangular shap	e (Flow on E	Either Side)				_
CHECKED I	BY	DJ																	INLET TYPE			OPSD Deck D	ains								
Design	LOCATIO From	N To	Gutte	r Distanc	ce Gutter	DRAI Roa	NAGE AREA	DETAILS ige Watershe	d Runof	f Time of	Rainfall	Loca	l Gutter	Sides o	f Gutter	Inle	t Flov	Flow Depth	Flow	FLOW, SP	READ AND I Flov	NLET SPACING	d Flow Deptl	Inlet	No. of	Inlet	Inlet	Inlet		Carryove	r Remarks
Frequency	Inlet	Inlet	Grade	e	Crossfall	l Crossfal	ill Wie	dth Are	a Coeff	Conc.	Intensity	Runof	f Flow	Gutter Flor	w Flow Ea	Spacin	g Sprea	at Shoulder	Area	a Velocity	Travel Tim	Encroachmen	t at EOI	Туре	Inlets	Elevation	Capacity	Efficiency		Flow	v
	Station	Station	m/n	n 1	m m/m	m/m	x m	m h	a .	· min	mm/h	m ³ /s	$\frac{Q_g}{m^3/s}$	3	- m ³ /s		n r	n mm	m ²	2 m/s	s mi	n 1	n mn	, 1 -	_	m	Q_i m ³ /s	Qi		m ³ /s	s
																															-
	Station 11	+219.5 to 11+428	3.8														Max	Spread Width =	2.00)		*0.05m toleran	ce at this stage	of design					<u> </u> '		_
2-yr	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	10.50	0.119	0.95	8.66	80.5	0.025	0.02547	2	0.01274	113.3	1.63	32.55	0.0265	0.48	3.93	0.00	32.5	SS9-8	2	87.55	0.0327	100%	0.0327	0.0000	Pier 12
(Minor system	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	118.1	0.016	0.01584	2	0.00792	48.0	1.36	27.24	0.0185	0.43	1.87	0.00	27.2	\$\$9-8 \$\$9-8	1	86.79	0.0139	100%	0.0139	0.0019	-
Event)	11+428.8	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.00332	2	0.00166	0.0	0.76	15.16	0.0202	0.44	1.02	0.00	20.4	557 0		86.15	0.0145	100%	0.0000	0.0033	-
	End																														
																													Ļ'		
	Station 11	+219.5 to 11+428	3.8														Max	Spread Width =	2.00)		*0.05m toleran	ce at this stage	of design					[]		-
	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	10.50	0.119	0.95	8.66	106.8	0.034	0.03380	2	0.01690	113.3	1.81	36.19	0.0327	0.52	3.66	0.00	36.2	SS9-8	2	87.55	0.0359	100%	0.0359	0.0000	Pier 12
5-yr (Minor	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	156.8	0.021	0.02102	2	0.01051	48.0	1.51	30.29	0.0229	0.46	1.75	0.00	30.3	SS9-8	1	86.79	0.0153	100%	0.0153	0.0057	
system	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	156.8	0.021	0.02673	2	0.01336	48.0	1.66	33.14	0.0275	0.49	1.64	0.00	33.1	SS9-8	1	86.47	0.0166	100%	0.0166	0.0101	_
Eventy	11+428.8	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.01013	2	0.00506	0.0	1.15	23.03								86.15		100%	0.0000	0.0101	-
	End																														-
																															-
					_												S	oulder Width =	2.00										<u> </u> '		_
10	Station 11	+219.5 to 11+428	3.8	112.2	2.00/	2.0%	10.50	0.110	0.05	0.66	121.2	0.020	0.02021	2	0.010//	112.2	Max	spread width =	2.00	0.54	2.62	*0.05m toleran	ce at this stage	of design	2	07.55	0.0277	1000/	0.0377	0.0016	Pier 12
10-yr (Minor	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	10.50	0.119	0.95	5.00	124.2	0.039	0.03931	2	0.01966	48.0	1.92	38.30	0.0367	0.54	3.52	0.00	0.0	SS9-8	2	87.55	0.0377	100%	0.0377	0.0016	-
system Event)	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	182.3	0.024	0.03401	2	0.01301	48.0	1.81	36.27	0.0329	0.52	1.55	0.00	0.0	SS9-8	1	86.47	0.0180	100%	0.0105	0.0160	-
	11+428.8	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.01602	2	0.00801	0.0	1.37	27.35								86.15		100%	0.0000	0.0160	
	End																												ļ'		_
																													├ ────'		
																	S	oulder Width =	2.00)											_
	Station 11	+219.5 to 11+428	3.8														Max	Spread Width =	3.00)									ļ'		_
100-year	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	10.50	0.119	0.95	8.66	178.4	0.056	0.05646	2	0.02823	113.3	2.19	43.87	0.0481	0.59	3.22	0.00	3.9	SS9-8	2	87.55	0.0425	100%	0.0425	0.0140	Pier 12
(Major System	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	261.8	0.035	0.04911	2	0.02456	48.0	2.08	41.63	0.0433	0.57	1.41	0.00	1.6	SS9-8	1	86.79	0.0203	100%	0.0203	0.0288	_
Event)	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	10.50	0.050	0.95	5.00	261.8	0.035	0.06392	2	0.03196	48.0	2.30	45.96	0.0528	0.61	1.32	0.00	6.0	SS9-8	1	86.47	0.0221	100%	0.0221	0.0418	-
	11+428.8 Feed	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.04184	2	0.02092	0.0	1.96	39.21								86.15		100%	0.0000	0.0418	-
	End																														-
																									I						
Rainfall Par	ameters) Rainfall par	ameters are based	l on intensity-di	ration-frequer	nev curves from M	MTO IDF Cury	ve Lookup																								
-	2 V St		- 20 800	· N · · · · 64		27 (00		10 V 64	. 4-	22 100	N. W 64	,	46 100	Deine II Inter		I ATTR															
	2-Year Stor	m: A = B =	= 20.800 = -0.699	S-Year Storn	A = B =	-0.699		10-Year Storm	A = B =	-0.699	- Year Storm:	A = B =	46.100 -0.699	Where,	I in mm/hr	$I = AI^{2}$															
Note	• Assumed r	o existing deck d	rains												T = Time of C	concentration in	n hour														
	EOP = Edg	e of pavement of	the travelled la	ne																											
Note Input	All the fig	ures in blue colo	ur need to be u	pdated by the	e user for respec	ctive project.							Time of Cond	centration by	B Time of Conc	entration by	Bransby Willia	ms Method.													
	Local D	off $(0) = 0.0025$	R CIA	-	-	(m ³ /s)									T_{c}	= 0.057	$\times L / (S)$	$A^{0.20} \times A^{0.7}$	10)												
	Local Kuli	Where,	C = Runoff c	oefficient		(1175)							Where,		Where,	$T_c = \text{Time of}$	concentration	min)													
			A = Watershe I = Rainfall I	ed area (ha) ntensity (mm/b	hr)											$L = WatershoS_{0} = Watersh$	ed length = Inle	Spacing (m)													
					,											A = Watersho	ed Area (ha)														
Note:	The inlet c	apacity of SS9-2E	3 type deck drai	n is taken fror	m MTO Design C	.nart 4.21.												(1/5)	$\times (O)^{3/8}$	3											
													Spread,		Spread,	(T) = -	0.375) ^{0.3}	$75 \times (1/S_x)$	$\frac{1}{)^{3/8} \times (1/)^{3/8}}$	$n)^{3/8} \times S$	0 3/16										

BRIDGE		K3C	SE			Deck Thickness	s (mm)	350											
SCENARIO)	KJC	51			Mannings n	s (11111)	0.013											
DESIGNEI) BY	EM																	
CHECKED	BY	DJ																	
	LOCATIO	N			-					FLOW, SPREAD A	AND INLET SPAC	CING							
Design Frequency	From Inlet	To Inlet	Pipe Length	Pipe	No. of Pines	Elevation	U/S Invert	D/S Invert	Pipe	D/S Hanger Depth	Pipe	Pipe Full Capacity	Pipe Full Velocity	Pipe Efficency	Pipe Capacity w/ Blockage	Inlet Canacity	Pipe Receiving Capacity	Carryover Flow Pipe	Remarks
Trequency	Station	mee	Length	Diameter	1 ipes	Lievation	mvert	mvert	Diop	Depth	Stope	Q_{full}	V clocky V _{full}	C eff.	W/ BIOCKage Q block	Q_i	Q_i / Q_{block}	Q_{cp}	
			m	mm	-	m	m	m	mm	mm	%					m ³ /s		m ³ /s	
	Station 11-	+219.5 to 11+3.	32.8																Dian 20
2-yr	11+219.5	11+332.8	48.0	300	1	86 79	85 644	85 322	0	500	0.67%	0.070	1 120	1000/	0.070	0.0227	410/	0.000	riei 20
(Minor	11+332.8	11+380.8	48.0	300	1	86.47	85 322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0327	41%	0.000	
Event)	11+428.8	117420.0			-	86.15						0.079	1.120	100%	0.079	0.0400	39%	0.000	Abutment
	111420.0																		
	Station 11-	+219.5 to 0+0																	Dian 20
5-yr	11+219.5	11+332.8	48.0	200	1	86.70	85 644	85 222	0	500	0.67%								Pier 20
(Minor	11+332.8	11+380.8	48.0	300	1	86.47	85 322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0359	45%	0.000	
Event)	11+380.8	11+428.8	40.0	500		86.15	05.522	05.001	V	500	0.0770	0.079	1.120	100%	0.079	0.0512	65%	0.000	Abutment
	117420.0					00.12													, ioutilion
		_																	
	Station 11-	+219.5 to 0+0																	D: 00
10-yr (Minor	11+219.5	11+332.8	10.0	200		06.70	05 (11	05.222	0	500	0.679/								Pier 20
system	11+332.8	11+380.8	48.0	300	1	86.79	85.044	85.322	0	500	0.67%	0.079	1.120	100%	0.079	0.0377	48%	0.000	
Event)	11+380.8	11+428.8	40.0	500	1	86.15	83.322	85.001	0	500	0.0776	0.079	1.120	100%	0.079	0.0542	68%	0.000	Abutment
	117420.0					00.12													, ioutilion
		_																	
	Station 11-	+219.5 to 0+0																	
100-year	11+219.5	11+332.8	10.0	200		0.6 50	0.5.4.4				0.6704								D: 10
System	11+332.8	11+380.8	48.0	300	1	86.79	85.644	85.322	0	500	0.67%	0.079	1.120	100%	0.079	0.0425	54%	0.000	Pier 12
Event)	11+380.8	11+428.8	48.0	300	1	80.47	83.322	85.001	0	500	0.07%	0.079	1.120	100%	0.079	0.0627	79%	0.000	
	11+428.8					80.15													
	1				1	I I													1
	Road Secti	ion Data																	
	EBL Width	(m)	5.5																
	Shoulder W	/idth (m)	2.0																
	Bridge Sta	ndard (WC-4	Bridge Deck Dre	inage)															
	10 Year Sto	orm	Full lane width	clear of any flo	ooding														
	100 Year S	torm	Minimum 2.5 n	n of Lane widt	h should be cle	ear of any floodi	ng												
	Spread Re	quirements																	
	10 Year Sp	read	2.0																
	100 Year S	pread	5.0																

INLET SPA	CING, SPREA	D FLOW DEP	TH CALCUL	LATIONS																											
BRIDGE	Crossing Spre	K3C	NE																RAINFALL ST	TATION(S)											
SCENARIO				_		DATE					_								DESIGN SPRE	EAD		10 Year - 2.0 m	; 100 Year - 3.0) m							
DESIGNED	BY	EM		_		DATE					-								CURB & GUT	TER TYPE		Concrete Barrie	er w/ Cutouts;	Gutter Type -	Triangular sha	pe (Flow on E	ither Side)				
CHECKED	BY	DJ	<u>.</u>																INLET TYPE			OPSD Deck Dra	ains								
Design	LOCATION	То	Gutte	r Distance	e Gutter	DRAIN	AGE AREA I	DETAILS e Watershed	1 Runof	f Time of	Rainfall	Loca	l Gutte	Sides of	Gutter	Inle	t Flov	v Flow Denth	Flow	FLOW, SP	PREAD AND I	NLET SPACING	Elow Denth	Inle	t No.of	Inlet	Inlet	Inlet		Carryover	Remark
Frequency	Inlet	Inlet	Grade	e	Crossfall	Crossfall	Widt	h Area	a Coeff	f. Conc.	Intensity	Runof	f Flow	Gutter Flow	Flow Ea	Spacing	g Sprea	at Shoulder	Area	a Velocity	y Travel Tim	Encroachment	t at EOP	Туре	e Inlets	Elevation	Capacity	Efficiency		Flow	rtemark
	Station	Station	<i>S</i> _a	o L	S_w	<i>S_x</i>	И	/ A		T _c	I mm/h	Q_{i} m^{3}/i	Q_g		Q_g $m^{3/c}$	L	, 1 2 r	d_s	A _F	- V	e mi	t (W _{LSE})	(d_1)				Q_i $m^{3/s}$	Q_i		Q_c $m^{3/c}$	
			IIVI									III /	5 m7.		- m73	'n			m	mvs	5 111					m	m 73			iii 73	
	Station 11+2	19.5 to 11+428.	8														Max	Spread Width =	2.00)		*0.05m toleranc	e at this stage	of design							
2-vr	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	6.00	0.068	0.95	9.16	77.4	0.014	0.01400	1	0.01400	113.3	1.69	33.72	0.0284	0.49	3.84	0.00	33.7	SS9-8	2	87.55	0.0337	100%	0.0337	0.0000	Pier 12
(Minor	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	118.1	0.009	0.00905	1	0.00905	48.0	1.43	28.64	0.0205	0.44	1.81	0.00	28.6	SS9-8	1	86.79	0.0145	100%	0.0145	0.0000	
Event)	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	118.1	0.009	0.00905	1	0.00905	48.0	1.43	28.64	0.0205	0.44	1.81	0.00	28.6	SS9-8	1	86.47	0.0145	100%	0.0145	0.0000	
	End	End	0.0776	0.0	2.076	2.076	0.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								80.15		10076	0.0000	0.0000	
	Station 11+2	10.5 to 11+429															Max	Spread Width =	2.00			*0.05m tolongue	a at this stage.	f davian							
	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	6.00	0.068	0.95	9.16	102.7	0.019	0.01857	1	0.01857	113.3	1.87	37.50	0.0351	0.53	3 57	0.05m loteranc	27 5	SS9-8	2	87.55	0.0370	100%	0.0370	0.0000	Pier 12
5-yr (Minor	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	156.8	0.012	0.01201	1	0.01201	48.0	1.59	31.84	0.0253	0.47	1.69	0.00	31.8	SS9-8	1	86.79	0.0160	100%	0.0160	0.0000	
system	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	156.8	0.012	0.01201	1	0.01201	48.0	1.59	31.84	0.0253	0.47	1.69	0.00	31.8	SS9-8	1	86.47	0.0160	100%	0.0160	0.0000	
Event)	11+428.8	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								86.15		100%	0.0000	0.0000	
	End																														
							-	-																							
																	S	houlder Width =	2.00)											
	Station 11+2	19.5 to 11+428.	8														Max	Spread Width =	2.00)		*0.05m toleranc	e at this stage	of design							
10-yr (Minor	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	6.00	0.068	0.95	9.16	119.5	0.022	0.02160	1	0.02160	113.3	1.98	39.68	0.0394	0.55	3.44	0.00	0.0	SS9-8	2	87.55	0.0389	100%	0.0389	0.0000	Pier 12
system	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	182.3	0.014	0.01397	1	0.01397	48.0	1.68	33.70	0.0284	0.49	1.63	0.00	0.0	SS9-8	1	86.79	0.0168	100%	0.0168	0.0000	
Event)	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	182.3	0.014	0.01397	1	0.01397	48.0	1.68	33.70	0.0284	0.49	1.63	0.00	0.0	SS9-8	1	86.47	0.0168	100%	0.0168	0.0000	
	End	End	0.07%	0.0	2.0%	2.0%	0.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								80.15		100%	0.0000	0.0000	
	Lind																														
																	s	houlder Width =	2.00												
	Station 11+2	19.5 to 11+428	2														Max	Spread Width =	3.00	,)											
100 1000	11+219.5	11+332.8	0.67%	113.3	2.0%	2.0%	6.00	0.068	0.95	916	171.6	0.031	0.03102	1	0.03102	113.3	2.27	45 45	0.0516	0.60	3 14	0.00	5.4	SS9-8	2	87.55	0.0438	100%	0.0438	0.0000	Pier 12
(Major	11+332.8	11+380.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	261.8	0.020	0.02006	1	0.02006	48.0	1.93	38.59	0.0372	0.54	1.49	0.00	0.0	SS9-8	1	86.79	0.0190	100%	0.0190	0.0011	
System Event)	11+380.8	11+428.8	0.67%	48.0	2.0%	2.0%	6.00	0.029	0.95	5.00	261.8	0.020	0.02112	1	0.02112	48.0	1.97	39.35	0.0387	0.55	1.47	0.00	0.0	SS9-8	1	86.47	0.0193	100%	0.0193	0.0018	
	11+428.8	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00180	1	0.00180	0.0	0.78	15.63								86.15		100%	0.0000	0.0018	
	End																														
Rainfall Par	meters																														
) Rainfall parar	neters are based	on intensity-du	uration-frequenc	cy curves from M	ATO IDF Curve	e Lookup																								
	2-Year Storm	: A =	20.800	5-Year Storm	: A =	27.600		10-Year Storm	: A =	= 32.100)-Year Storm:	A =	46.100	Rainfall Inten	sity:	$I = AT^B$															
		<i>B</i> =	-0.699		<i>B</i> =	-0.699			<i>B</i> =	- 0.699		B =	- 0.699	Where,	I in mm/hr T = Time of C	oncentration in	hour														
Not	: Assumed no	existing deck dra	ins.												1 Time of Co		nour														
Note	EOP = Edge of	of pavement of the	ne travelled lan	ne																											
Input	All the figure	es in blue colou	need to be up	pdated by the u	iser for respect	ive project.							Time of Conc	entration by E	a Time of Conce	ntration by B	ransby Willia	ns Method.													
	Local Runoff	$(Q_r) = 0.0028$	CIA			(m ³ /s)									T_{c}	= 0.057	$\times L / (S)$	$_{0}^{\circ .20} \times A^{0}$	¹⁰)												
		Where,	C = Runoff c A = Watershe	coefficient									Where,		Where,	$T_c = \text{Time of}$ I = Watershe	concentration (min) Spacing (m)													
			I = Rainfall I	Intensity (mm/h	r)											$S_0 = Watersh$	ned Slope (%)	Shacing (iii)													
Note:	The inlet can	acity of SS9-2B	type deck drai	in is taken from	MTO Design C	'hart 4.21.										A = Watershe	ed Area (ha)														
													Spread		Spread	(T) =		$(1/S_x)$	$\times (Q_g)^{3/8}$	3											
													Spi cuu,		~p. cady	(I) = (I)	0.37 <i>5</i>) ^{0.3}	$^{75} \times (1/S_x)$	$)^{3/8} \times (1/$	n) ^{3/8} ×S	$S_0^{3/16}$										

BRIDGE		K3C	NE			Deck Thickness	s (mm)	350											
SCENARIO	DV	EM				Mannings n		0.013											
CHECKED	BY	DJ																	
	LOCATION									FLOW, SPREAD	ND INLET SPAC	CING							
Design Frequency	From Inlet Station	To Inlet	Pipe Length L	Pipe Diameter Dia	No. of Pipes	Inlet Elevation	U/S Invert	D/S Invert	Pipe Drop	D/S Hanger Depth	Pipe Slope S	Pipe Full Capacity Q_{full}	Pipe Full Velocity V _{full}	Pipe Efficency C _{eff.}	Pipe Capacity w/ Blockage Q _{block}	Inlet Capacity Q_i	Pipe Receiving Capacity Q_i / Q_{block}	Carryover Flow Pipe Q _{cp}	Remark
			m	mm	-	m	m	m	mm	mm	%					m ³ /s		m ³ /s	
	Station 11+2	19.5 to 11+332																	
2 vr	11+219.5	11+332.8																	Pier 2
(Minor	11+332.8	11+380.8	48.0	300	1	86.79	85.644	85.322	0	500	0.67%	0.079	1.120	100%	0.079	0.0337	43%	0.000	-
system Event)	11+380.8	11+428.8	48.0	300	1	86.47	85.322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0483	61%	0.000	
Eventy	11+428.8					86.15													Abutmer
	Station 11+2	19.5 to 0+0																	ni
5-yr	11+219.5	11+332.8	48.0	300	1	86 79	85 644	85 322	0	500	0.67%								Pier 2
(Minor	11+332.8	11+380.8	48.0	300	1	86.47	85 322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0370	47%	0.000	
System Event)	11+380.8	11+428.8	40.0	500	1	86.15	65.522	85.001	0	500	0.0770	0.079	1.120	100%	0.079	0.0531	6/%	0.000	Abutmer
	Station 11+2	19.5 to 0+0																	
10-vr	11+219.5	11+332.8																	Pier 2
(Minor	11+332.8	11+380.8	48.0	300	1	86.79	85.644	85.322	0	500	0.67%	0.079	1.120	100%	0.079	0.0389	49%	0.000	
system Event)	11+380.8	11+428.8	48.0	300	1	86.47	85.322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0558	70%	0.000	
	11+428.8					86.15													Abutmen
	Station 11+2	19.5 to 0+0																	
100-year	11+219.5	11+332.8																	
(Major System	11+332.8	11+380.8	48.0	300	1	86.79	85.644	85.322	0	500	0.67%	0.079	1.120	100%	0.079	0.0438	55%	0.000	Pier 12
Event)	11+380.8 11+428.8	11+428.8	48.0	300	1	86.47 86.15	85.322	85.001	0	500	0.67%	0.079	1.120	100%	0.079	0.0627	79%	0.000	
																			-
	Road Section	n Data			<u> </u>						I	I			I				<u> </u>
	EBL Width (Lane Width ((m) m)	5.5 3.5																
	Shoulder Wid	lth (m)	2.0																
	Bridge Stand 10 Year Stor	lard (WC-4 B n	ridge Deck Drai Full lane width	inage) clear of any flo	ooding														
	100 Year Sto	rm urements	Minimum 2.5 m	i of Lane widtl	n should be clea	ir ot any floodii	ng												
	10 Year Spre 100 Year Spr	ad ead	2.0 3.0																

INLET SPAC	CING, SPRE	AD FLOW DEI	PTH CALCUL	ATIONS																									
BRIDGE	crossing op	K3C	SW																RAINFALL STATIC	DN(S)									
SCENARIO						DATE													DESIGN SPREAD	(3)		10 Vear - 2.0 m	100 Vear - 3.0 n	n					_
DESIGNED	ov	EM				DATE													CUPP & CUTTEP 1	TVDE		Concrete Parrie	r w/ Cutouts: Cu	attor Tuno - Tri	iangular cha	no (Flow on F	ither Side)		-
CHECKED B	v	DI				DAIL													INI ET TYPE	IIIL		OPSD Deck Dre	ine	itter Type - Th	langular sha		the suc		-
CHECKED B	LOCATION	1				DRAIN	IAGE AREA I	DETAILS											FLOW SPREAD	AND INLET S	PACING	OI SD DECK DIA	uns						_
Design	From	То	Gutter	Distance	Gutter	Road	Average	e Watershee	l Runoff	Time of	Rainfall	Local	Gutte	r Sides of	Gutter	Inlet	Flow	Flow Depth	Flow	Flow	v Flov	v Lane Spread	Flow Depth	Inlet	No. of	Inlet	Inlet	Carryove	er Remark
Frequency	Inlet	Inlet Station	Grade	I	Crossfal	Crossfall	Width W	h Area	Coeff.	Conc.	Intensity I	Runoff	Flow	Gutter Flow	Flow Ea	Spacing I	Spread T	at Shoulder	Area	Velocity	y Travel Time	Encroachment	at EOP	Туре	Inlets	Elevation	Capacity	Flov	N
	Sution	Sution	m/m	m	m/m	m/m	n n	n ha	ı -	min	mm/h	m ³ /s	m ³ /s	3 -	m ³ /s	m	m	mm	m ²		's mii	n m	mm	-	-	m	m ³ /s	m ³ /	c /s
																		Shoulder Width =	2.00										_
	Station 11+	219 5 to 10+294															1	Max Spread Width =	2.00			*0.05m toleranc	e at this stage of	dasian					_
	11+210.5	11+105.0	0.67%		2.0%	2.0%	10.50	0.120	0.95	8 74	80.0	0.026	0.02558	2	0.01270	114.5	1.63	32.60	0.0266	0.48	2.07	0.00		sso e	2	97.59	0.0227	0.0000	Pier 17
	11+219.5	10+994.0	0.67%	100.0	2.0%	2.0%	10.50	0.120	0.95	8 50	81.5	0.025	0.02528	2	0.01279	111.0	1.62	32.60	0.0263	0.48	3.85	0.00	0.0	\$\$9.8	2	86.81	0.0327	0.0000	_
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7 74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31.99	0.0256	0.48	3 51	0.00	0.0	\$\$9.8	2	86.07	0.0322	0.0000	
2-vr	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7 74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31.99	0.0256	0.48	3.51	0.00	0.0	SS9-8	2	85 39	0.0322	0.0000	_
(Minor	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7 74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31.99	0.0256	0.48	3.51	0.00	0.0	SS9-8	2	84 72	0.0322	0.0000	_
System Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7 74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31.99	0.0256	0.48	3 51	0.00	0.0	SS9-8	2	84.05	0.0322	0,0000	1
Eventy	10+594.0	10+494 0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31 99	0.0256	0.48	3.51	0.00	0.0	SS9-8	2	83.37	0.0322	0.0000	1
	10+494 0	10+394.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31 99	0.0256	0.48	3 51	0.00	0.0	SS9-8	2	82,70	0.0322	0.0000	1
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	87.1	0.024	0.02432	2	0.01216	100.0	1.60	31.99	0.0256	0.48	3.51	0.00	0.0	SS9-8	2	82.03	0.0322	0.0000	_
	10+294.0	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.00000	2	0.00000	0.0	0.00	0.00								81.35		0.0000	Abutment
	End																												
																			• • •										_
	-																	Shoulder Width =	2.00										_
	Station 11+	219.5 to 10+294																Max Spread Width =	2.00			*0.05m toleranc	e at this stage of a	design					D: 17
	11+219.5	11+105.0	0.67%		2.0%	2.0%	10.50	0.120	0.95	8.74	106.1	0.034	0.03394	2	0.01697	114.5	1.81	36.25	0.0328	0.52	3.69	0.00	0.0	SS9-8	2	87.58	0.0360	0.0000	Pier 1/
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	10.50	0.117	0.95	8.50	108.2	0.034	0.03355	2	0.01677	111.0	1.80	36.09	0.0326	0.52	3.59	0.00	0.0	SS9-8	2	86.81	0.0358	0.0000	_
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	SS9-8	2	86.07	0.0354	0.0000	_
5-yr (Minor	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	SS9-8	2	85.39	0.0354	0.0000	_
System	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	SS9-8	2	84.72	0.0354	0.0000	_
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	SS9-8	2	84.05	0.0354	0.0000	_
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	SS9-8	2	83.37	0.0354	0.0000	_
	10+494.0	10+394.0	0.6/%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	889-8	2	82.70	0.0354	0.0000	_
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	115.5	0.032	0.03227	2	0.01614	100.0	1.78	35.57	0.0316	0.51	3.27	0.00	0.0	889-8	2	82.03	0.0354	0.0000	Abutment
	10+294.0	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.00000	2	0.00000	0.0	0.00	0.00								81.35		0.0000	Toutinent
	Епа																												_
																													1
																		Shoulder Width =	2.00)									
	Station 11+	219.5 to 10+294															1	Max Spread Width =	2.00			*0.05m toleranc	e at this stage of	design					
	11+219.5	11+105.0	0.67%		2.0%	2.0%	10.50	0.120	0.95	8.74	123.4	0.039	0.03947	2	0.01973	114.5	1.92	38.36	0.0368	0.54	3.56	0.00	0.0	SS9-8	2	87.58	0.0378	0.0017	Pier 17
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	10.50	0.117	0.95	8.50	125.8	0.039	0.04069	2	0.02035	111.0	1.94	38.80	0.0376	0.54	3.42	0.00	0.0	SS9-8	2	86.81	0.0382	0.0025	_
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.04005	2	0.02003	100.0	1.93	38.57	0.0372	0.54	3.10	0.00	0.0	SS9-8	2	86.07	0.0380	0.0021	_
10-yr	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03961	2	0.01981	100.0	1.92	38.41	0.0369	0.54	3.10	0.00	0.0	SS9-8	2	85.39	0.0378	0.0018	_
(Minor system	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03931	2	0.01966	100.0	1.91	38.30	0.0367	0.54	3.11	0.00	0.0	SS9-8	2	84.72	0.0377	0.0016	_
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03910	2	0.01955	100.0	1.91	38.22	0.0365	0.54	3.11	0.00	0.0	SS9-8	2	84.05	0.0377	0.0014	4
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03896	2	0.01948	100.0	1.91	38.17	0.0364	0.53	3.12	0.00	0.0	SS9-8	2	83.37	0.0376	0.0013	4
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03886	2	0.01943	100.0	1.91	38.14	0.0364	0.53	3.12	0.00	0.0	SS9-8	2	82.70	0.0376	0.0013	4
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	134.4	0.038	0.03880	2	0.01940	100.0	1.91	38.11	0.0363	0.53	3.12	0.00	0.0	SS9-8	2	82.03	0.0376	0.0012	_
	10+294.0	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.00122	2	0.00061	0.0	0.52	10.41								81.35		0.0012	Abutment
	End	_																											_

INLET SP.	CING, SPRE	AD FLOW DEI	PTH CALCULA	TIONS																									
Kingston 3	d Crossing Sp	read																											
BRIDGE		K3C	SW																RAINFALL STATIO	DN(S)									
SCENARIO						DATE					-								DESIGN SPREAD			10 Year - 2.0 m;	100 Year - 3.0	m					
DESIGNED	BY	EM				DATE					_								CURB & GUTTER	ГҮРЕ		Concrete Barrie	r w/ Cutouts; C	Gutter Type - 1	Friangular sha	pe (Flow on E	ither Side)		
CHECKED	BY	DJ	_																INLET TYPE			OPSD Deck Dra	ins						
	LOCATION	1	-		1 -	DRAIN	AGE AREA D	DETAILS					.1	I	1 -				FLOW, SPREAD	AND INLET S	PACING								
Design	From Inlet	To Inlet	Gutter	Distanc	e Gutter Crossfal	r Road Crossfall	Average Width	Watershed	Runoff Coeff	f Time of Conc	f Rainfall Intensity	Local Runofi	f Gutter	Sides of Gutter Flow	Gutt Flow F	ter Inlet Fa Spacing	Flov	w Flow Depth d at Shoulder	Flow Area	Flow Velocity	7 Flow 7 Travel Time	Lane Spread Encroachment	Flow Depth at EOP	Inlet Type	No. of Inlets	Inlet Elevation	: Inlet Canacity	Carryover	Remarks
	Station	Station	S _o	I	S_w	S _x	W	A	С	Т _с	I	Q,	Q_g		Q	$Q_g = L$	~F	T d_s	A F	V	t t	(W_{LSE})	(d_1)	-) [-			Q_i	Qc	
			m/m	n	n m/m	m/m	n	ı ha	-	- min	n mm/h	m ³ /s	s m ³ /s	-	- m ³	³ /s m	1	n mm	m m	m/s	s min	m	mm	-	-	m	m ³ /s	m ³ /s	
	-																	Shoulder Width =	2.00										
	Station 11+	219.5 to 10+294																Max Spread Width =	3.00)							-		
	11+219.5	11+105.0	0.67%	0.0	2.0%	2.0%	10.50	0 120	0.95	8 74	177.2	0.057	0.05668	2	0.02834	114.5	2 20	43.93	0.0483	0.59	3 25	0.00	39	SS9-8	2	87.58	0.0425	0.0142	Pier 17
	11+105.0	10+004.0	0.67%	100.0	2.0%	2.0%	10.50	0.117	0.95	8 50	180.7	0.056	0.07021	2	0.02510	111.0	2.20	47.60	0.0567	0.62	2.00	0.00	7.6	550.8	2	96.91	0.0455	0.0247	
	10:004.0	10:004.0	0.0770	100.0	2.0%	2.0%	10.50	0.105	0.05	7.74	102.0	0.054	0.07021	2	0.030310	100.0	2.50	47.00	0.0507	0.02	2.0	0.00	0.7	000.0	2	96.07	0.0471	0.0247	
	10+994.0	10+894.0	0.07%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.07801	2	0.03931	100.0	2.48	49.00	0.0617	0.64	2.01	0.00	9.7	559-8	2	80.07	0.04/1	0.0315	
100-year (Major	10+894.0	10+/94.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.09404	2	0.04702	100.0	2.66	53.12	0.0705	0.6/	2.50	0.00	13.1	889-8	2	85.39	0.0498	0.0442	
System	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.09810	2	0.04905	100.0	2.70	53.97	0.0728	0.67	2.47	0.00	14.0	SS9-8	2	84.72	0.0505	0.0476	
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.10152	2	0.05076	100.0	2.73	54.66	0.0747	0.68	2.45	0.00	14.7	SS9-8	2	84.05	0.0510	0.0505	
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.12406	2	0.06203	100.0	2.95	58.93	0.0868	0.71	2.33	0.00	18.9	SS9-8	2	83.37	0.0542	0.0699	
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.12375	2	0.06188	100.0	2.94	58.88	0.0867	0.71	2.33	0.00	18.9	SS9-8	2	82.70	0.0542	0.0696	
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	10.50	0.105	0.95	7.74	193.0	0.054	0.12349	2	0.06174	100.0	2.94	58.83	0.0865	0.71	2.34	0.00	18.8	SS9-8	2	82.03	0.0541	0.0694	
	10+294.0	End	0.67%	0.0	2.0%	2.0%	10.50	0.000	0.95	0.00	0.0	0.000	0.06935	2	0.03469	0.0	2.37	47.39								81.35		0.0694	Abutment
	End																												
<u>Rainfall Pa</u> No	End Image: Constraint of the travelled lane infall Parameters a) Rainfall parameters are based on intensity-duration-frequency curves from MTO IDF Curve Lookup 2-Year Storm: $A = 20,800$ 2-Year Storm: $A = 27,600$ 10-Year Storm: $B = -0,699$ Note: Assumed no existing deck drains. EOP = Edge of pavement of the travelled lane										32.100 -0.699	10	10-Year Storm:	A = B =	46.100 -0.699	Rainfall Intens Where,	ity: I in mm/hr T = Time of t	$I = AT^B$ Concentration in hour											
Note Input	All the figu	res in blue colou	ir need to be up	lated by the	user for respec	tive project.							Time of Conc	entration by B	B Time of Co	ncentration by B	ransby Willia	ams Method.											
						. 1								·	T	= 0.057	$\times L /$	$(S_0^{0.20} \times A^{0.1})$	¹⁰)										
	Local Runoff $(Q_r) = 0.0028 \ CIA$ (m ³ /s) Where, $C = \text{Runoff coefficient}$ A = Watershed area (ha) I = Rainfall Intensity (mm/hr) te: The inlet capacity of SS9-2B type deck drain is taken from MTO Design Chart 4.21												Where,		Where,	T_c = Time of c L = Watershed S_0 = Watershed A = Watershed	oncentration length = Inle d Slope (%) Area (ha)	(min) et Spacing (m)	,										
Note:	The inlet ca	pacity of SS9-2B	type deck drain	is taken fron	n MTO Design (Chart 4.21.							Spread,		Spread,	$(T) = \overline{(}$	0.375	$(1/S_x)^{0.375} \times (1/S_x)^{0.375}$	$(Q_g)^{3/8}$) ^{3/8} ×(1/n)	$)^{3/8} \times S_{0}$	3/16 D								

BRIDGE SCENARIO DESIGNED I	ВҮ	K3C EM	SW			Deck Thicknes Mannings n	s (mm)	350 0.013											
CHECKED E	BY	DJ																	
Design Frequency	LOCATION From Inlet	To Inlet	Pipe Length	Pipe Diameter	No. of Pipes	Inlet Elevation	U/S Invert	D/S Invert	Pipe Drop	FLOW, SPREAD A D/S Hanger Depth	AND INLET SPA Pipe Slope	CING Pipe Full Capacity	Pipe Full Velocity	Pipe Efficency	Pipe Capacity w/ Blockage	Inlet Capacity	Pipe Receiving Capacity	Carryover Flow Pipe	Remarks
	Station		L m	mm	-	m	m	m	mm	mm	<u> </u>	Q_{full}	V full	C _{eff.}	Q block	$\frac{Q_i}{m^3/s}$	Q i / Q block	$\frac{Q_{cp}}{m^3/s}$	
	Station 11+	219.5 to 10+294																	
	11+219.5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1.122	100%	0.079	0.0327	41%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0653	82%	0.000	
2-yr (Minor	10+894.0	10+794.0	100.0	373	1	84.72	82 410	82 646	75	500	0.07%	0.144	1.302	100%	0.144	0.0975	68%	0.000	
System	10+/94.0	10+694.0	100.0	450	1	84.05	82 646	82.040	0	500	0.57%	0.251	1.576	100%	0.251	0.1296	52%	0.000	
Event)	10+694.0	10+594.0	100.0	525	1	83.37	81 998	81 325	75	500	0.67%	0.216	1.357	100%	0.216	0.1040	/5%	0.000	
	10+394.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.1940	64%	0.000	
	10+394.0	10+394.0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.504	1.050	100%	0.504	0.2583	51%	0.000	
	10+294.0	End				81.35						0.201	1.702	10070	0.001	0.2000	5170	0.000	Abutment
	Station 11+	210 5 to 10+204																	
	11+210 5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1 122	100%	0.079	0.0360	45%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0718	90%	0.000	
5-yr	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1071	74%	0.000	
(Minor	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600	0.77%	0.251	1.576	100%	0.251	0.1425	57%	0.000	
Event)	10+694.0	10+594.0	100.0	450	1	84.05	82.646	82.073	0	500	0.57%	0.216	1.357	100%	0.216	0.1778	82%	0.000	
	10+594.0	10+494.0	100.0	525	1	83.37	81.998	81.325	75	500	0.67%	0.353	1.630	100%	0.353	0.2132	60%	0.000	
	10+494.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.2486	70%	0.000	
	10+394.0	10+294.0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.504	1.782	100%	0.504	0.2839	56%	0.000	
	10+294.0	End				81.35													Abutment
																		<u> </u>	
	Station 11+	219.5 to 10+294																	
	11+219.5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1.122	100%	0.079	0.0378	48%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0760	96%	0.000	
10-yr (Minor	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1139	79%	0.000	
system	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600 500	0.77%	0.251	1.576	100%	0.251	0.1518	61%	0.000	
Event)	10+694.0	10+594.0	100.0	430	1	04.00 83.27	02.040 81.009	02.073	75	500	0.57%	0.216	1.357	100%	0.216	0.1895	88%	0.000	
	10+594.0	10+494.0	100.0	525	1	82.70	81 325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.2272	64% 750/	0.000	
	10+494.0	10+394.0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.553	1.030	100%	0.504	0.2048	/ 5% 60%	0.000	
	10+294.0	End				81.35	-				•	0.00+	1./02	10070	0.004	0.3024	0070	0.000	Abutment
	10.271.0																		

PRIDCE		K2C	SW		1	Deck Thicknes	(mm)	250											
SCENARIO		KJC	<u> </u>		1	Manninge n	is (min)	0.013											
DESIGNED	ov	EM			1	wannings n		0.015											
CHECKED	v																		
CHECKED		J							I	ELOW SPREAD	AND INI ET SPAC	TING							
Design	From	То	Pipe	Pipe	No. of	Inlet	U/S	D/S	Pipe	D/S Hanger	Pipe	Pipe Full	Pipe Full	Pipe	Pipe Capacity	Inlet	Pipe Receiving	Carryover	Remarks
Frequency	Inlet Station	Inlet	Length L	Diameter Dia	Pipes	Elevation	Invert	Invert	Drop	Depth	Slope S	Capacity Q_{full}	Velocity V_{full}	Efficency C _{eff.}	w/ Blockage Q block	Capacity Q_i	Capacity Q_i / Q_{block}	Flow Pipe Q _{cp}	
			m	mm	-	m	m	m	mm	mm	%					m ³ /s		m ³ /s	
																			-
																			-
	Station 11+	219.5 to 10+29	4																-
	11+219.5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1.122	100%	0.079	0.0425	54%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0880	111%	0.009	
100-vear	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1352	94%	0.000	
(Major	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600	0.77%	0.251	1.576	100%	0.251	0.1850	74%	0.000	
System Event)	10+694.0	10+594.0	100.0	450	1	84.05	82.646	82.073	0	500	0.57%	0.216	1.357	100%	0.216	0.2355	109%	0.020	
, í	10+594.0	10+494.0	100.0	525	1	83.37	81.998	81.325	75	500	0.67%	0.353	1.630	100%	0.353	0.2865	81%	0.000	
	10+494.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.3407	97%	0.000	
	10+394.0	10+294.0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.504	1.782	100%	0.504	0.3949	78%	0.000	
	10+294.0	End				81.35													Abutment
	Road Section	on Data	5.5																
	Lane Width	(m)	3.5																
	Shoulder W	idth (m)	2.0																
	D U G			•															
	10 Year Stor	idard (WC-4 B rm	Full lane width	ainage) a clear of any flo	oding														
	100 Year St	orm	Minimum 2.5 r	m of Lane width	n should be cle	ar of any flood	ing												
	Spread Rec	uiromente																	
	10 Year Spr	read	2.0																
	100 Year Sp	oread	3.0																

INLET SPAC	CING, SPREA	D FLOW DEI	PTH CALCULA	TIONS																									
RELIGE	crossing spre	K2C	NW															1	DAINEALL STAT	TION(S)									
SCENARIO		KJC	1			DATE																10 V	100 X 2 0)					
SCENARIO						DATE					-							1	DESIGN SPREAT			10 Year - 2.0 m	; 100 Year - 5.0) m					_
DESIGNED F	βY	EM				DATE					-								CURB & GUITE	RTYPE		Concrete Barrie	er w/ Cutouts;	Gutter Type -	Friangular shape	(Flow on Ei	ther Side)		-
CHECKED B	Y	DJ				55.40													INLET TYPE	D AND DI	ET OD LODIO	OPSD Deck Dra	ains						_
Design	From	То	Gutter	Distance	Gutter	r Road	AGE AREA L	Watershed	Runof	f Time of	Rainfall	Local	Gutter	Sides of	Gutter	Inlet	Flow	Flow Depth	FLOW, SPREA	D AND INL Flow	ET SPACING Flow	Lane Spread	Flow Depth	Inlet	No. of	Inlet	Inlet	Carrvove	r Remarks
Frequency	Inlet	Inlet	Grade		Crossfall	l Crossfall	l Width	n Area	Coeff	. Conc.	Intensity	Runoff	f Flow	Gutter Flow	Flow Ea	Spacing	Spread	at Shoulder	Area	Velocity	Travel Time	Encroachment	at EOP	Туре	Inlets	Elevation	Capacity	Flov	v
	Station	Station	S _o	L	S _w	, <i>S</i> _x	W	' A	С	T _c	I	Q_r	Q_g		Q_g	L	Т	d_s	A _F	V	t	(W_{LSE})	(d_1)				Q_i	Q	c
			m/m	m	m/m	n m/m	n n	n ha	-	· min	mm/h	m [°] /s	s m³/s	-	m ³ /s	m	m	mm	m²	m/s	min	n m	n mm	-	-	m	m [°] /s	m ² /	S
																													_
																	Sh	oulder Width =	2.00										_
	Station 11+21	9.5 to 10+294															Max S	pread Width =	2.00			*0.05m toleranc	e at this stage o	of design					_
	11+219.5	11+105.0	0.67%		2.0%	2.0%	6.00	0.069	0.95	9.24	76.9	0.014	0.01405	1	0.01405	114.5	1.69	33.77	0.0285	0.49	3.87	0.00	0.0	SS9-8	2	87.58	0.0338	0.0000	Pier 17
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	6.00	0.067	0.95	8.99	78.4	0.014	0.01389	1	0.01389	111.0	1.68	33.63	0.0283	0.49	3.76	0.00	0.0	SS9-8	2	86.81	0.0336	0.0000	_
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	86.07	0.0332	0.0000	
2-yr	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	85.39	0.0332	0.0000	
(Minor System	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	84.72	0.0332	0.0000	
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	84.05	0.0332	0.0000	
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	83.37	0.0332	0.0000	
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	82.70	0.0332	0.0000	
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	83.7	0.013	0.01336	1	0.01336	100.0	1.66	33.14	0.0275	0.49	3.42	0.00	0.0	SS9-8	2	82.03	0.0332	0.0000	
	10+294.0	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								81.35		0.0000	Abutment
	End																												
																	S.L.	ouldor Width -	2.00										-
		0.5 (10) 204															Max	Spread Width -	2.00			*0.05 / 1							-
	Station 11+21	9.5 to 10+294	0.6704		2.00/	2.00/	6.00	0.070	0.05		102.0	0.010	0.010/5		0.010/5		1.00	on co	0.0252	0.52	2.0	~0.05m toleranc	e at this stage o	of aesign		07.50	0.0251		Pier 17
	11+219.5	11+105.0	0.67%		2.0%	2.0%	6.00	0.069	0.95	9.24	102.0	0.019	0.01865	1	0.01865	114.5	1.88	37.55	0.0353	0.53	3.61	0.00	0.0	SS9-8	2	87.58	0.0371	0.0000	
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	6.00	0.067	0.95	8.99	104.1	0.018	0.01843	1	0.01843	111.0	1.87	37.39	0.0349	0.53	3.51	0.00	0.0	SS9-8	2	86.81	0.0370	0.0000	-
_	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	889-8	2	86.07	0.0365	0.0000	
5-yr (Minor	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	SS9-8	2	85.39	0.0365	0.0000	-
System	10+/94.0	10+694.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	889-8	2	84.72	0.0365	0.0000	
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	889-8	2	84.05	0.0365	0.0000	
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	889-8	2	83.37	0.0365	0.0000	
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	SS9-8	2	82.70	0.0365	0.0000	-
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	111.1	0.018	0.01773	1	0.01773	100.0	1.84	36.85	0.0339	0.52	3.19	0.00	0.0	\$\$9-8	2	82.03	0.0365	0.0000	Abutmont
	10+294.0	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								81.35		0.0000	Abuthent
	End																												
<u> </u>																													1
																	Sh	oulder Width =	2.00										_
	Station 11+21	9.5 to 10+294															Max S	Spread Width =	2.00			*0.05m toleranc	e at this stage o	of design					_
	11+219.5	11+105.0	0.67%		2.0%	2.0%	6.00	0.069	0.95	9.24	118.7	0.022	0.02169	1	0.02169	114.5	1.99	39.74	0.0395	0.55	3.47	0.00	0.0	SS9-8	2	87.58	0.0390	0.0000	Pier 17
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	6.00	0.067	0.95	8.99	121.0	0.021	0.02144	1	0.02144	111.0	1.98	39.57	0.0391	0.55	3.38	0.00	0.0	SS9-8	2	86.81	0.0388	0.0000	_
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	86.07	0.0383	0.0000	_
10-yr	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	85.39	0.0383	0.0000	
(Minor system	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	84.72	0.0383	0.0000	
Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	84.05	0.0383	0.0000	_
	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	83.37	0.0383	0.0000	1
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	82.70	0.0383	0.0000	
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	129.2	0.021	0.02062	1	0.02062	100.0	1.95	39.00	0.0380	0.54	3.07	0.00	0.0	SS9-8	2	82.03	0.0383	0.0000	
	10+294.0	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00000	0.0	0.00	0.00								81.35		0.0000	Abutment
	End																												

INLET SPACE	CING, SPRE	AD FLOW DEF read	PTH CALCULA	ATIONS																		
BRIDGE		K3C	NW																RAINFALL ST	ATION(S)		
SCENARIO						DATE													DESIGN SPRE	AD		10 Year
DESIGNED	BY	EM				DATE													CURB & GUT	FER TYPE		Concre
CHECKED F	Y	DJ								<u> </u>									INLET TYPE			OPSD
	LOCATION					DRAIN	AGE AREA DE	TAILS											FLOW, SPR	EAD AND INL	ET SPACING	
Design Frequency	From Inlet	To Inlet	Gutter Grade	Distance	Gutter Crossfall	Road Crossfall	Average Width	Watershed Area	Runoff Coeff.	Time of Conc.	Rainfall Intensity	Local Runoff	Gutter Flow	Sides of Gutter Flow	Gutter Flow Ea	Inlet Spacing	Flow Spread	Flow Depth at Shoulder	Flow Area	Flow Velocity	Flow Travel Time	Lar Encro
	Station	Station	m/m	L m	m/m	m/m	m	A ha		I _c min	mm/h	$\frac{Q_r}{m^3/s}$	$\frac{Q_g}{m^3/s}$	-	$\frac{Q_g}{m^3/s}$	m L	m	mm	M _F m ²	m/s	mir	1
																						──
																	She	oulder Width =	2.00			
	Station 11+2	219.5 to 10+294															Max S	pread Width =	3.00			
	11+219.5	11+105.0	0.67%	0.0	2.0%	2.0%	6.00	0.069	0.95	9.24	170.4	0.031	0.03115	1	0.03115	114.5	2.28	45.52	0.0518	0.60	3.17	0
	11+105.0	10+994.0	0.67%	100.0	2.0%	2.0%	6.00	0.067	0.95	8.99	173.8	0.031	0.03079	1	0.03079	111.0	2.27	45.32	0.0513	0.60	3.09	0.
	10+994.0	10+894.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.02962	1	0.02962	100.0	2.23	44.67	0.0499	0.59	2.81	0.
100-vear	10+894.0	10+794.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.03774	1	0.03774	100.0	2.45	48.91	0.0598	0.63	2.64	0
(Major	10+794.0	10+694.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.02962	1	0.02962	100.0	2.23	44.67	0.0499	0.59	2.81	0.
System Event)	10+694.0	10+594.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.02962	1	0.02962	100.0	2.23	44.67	0.0499	0.59	2.81	0.
, í	10+594.0	10+494.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.03402	1	0.03402	100.0	2.35	47.05	0.0553	0.61	2.71	0.
	10+494.0	10+394.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.02962	1	0.02962	100.0	2.23	44.67	0.0499	0.59	2.81	0.
	10+394.0	10+294.0	0.67%	100.0	2.0%	2.0%	6.00	0.060	0.95	8.18	185.6	0.030	0.02962	1	0.02962	100.0	2.23	44.67	0.0499	0.59	2.81	0.
	10+294.0	End	0.67%	0.0	2.0%	2.0%	6.00	0.000	0.95	0.00	0.0	0.000	0.00000	1	0.00001	0.0	0.11	2.23				
	End																					
<u>Rainfall Para</u> a a Note	meters Rainfall para 2-Year Storn Assumed no	meters are based A = B = B = B P existing deck dr	l on intensity-dur 20.800 -0.699 rains.	ration-frequenc	y curves from M 2-Year Storm:	1TO IDF Curve <i>A</i> = <i>B</i> =	27.600 -0.699	10)-Year Storm:	A = x $B = x$	32.100 -0.699	100)-Year Storm:	A = B =	46.100 -0.699	Rainfall Intens Where,	ity: I in mm/hr T = Time of Co	$I = AT^B$	iour	L	L	
Note	EOP = Edge	of pavement of t	ine travelled lane																			
Input	All the figu	res in blue colou	ir need to be up	dated by the	user for respect	ive project.							Time of Conc	entration by B	Time of Conc	centration by B	ransby Willian	ns Method.	10.)			
	Local Runo	ff $(Q_r) = 0.0028$ Where,	CIA $C = Runoff cool$ $A = Watershed$ $I = Rainfall In$	efficient l area (ha) tensity (mm/hr)	(m ³ /s)							Where,		T_{c} Where,	= 0.057 T_c = Time of C L = Watershee S_0 = Watershee A = Watershee	$\times L / (S_0$ concentration (n 1 length = Inlet s ed Slope (%) 1 Area (ha)	$A^{0} \times A^{0}$ nin) Spacing (m))			
Note:	The inlet cap	pacity of SS9-2B	type deck drain	is taken from	MTO Design C	hart 4.21.							Spread,		Spread,	$(T) = \frac{1}{(0)}$	0.37 <i>5</i>) ^{0.37}	$\frac{(1/S_x)}{\sqrt{5} \times (1/S_x)}$	$\frac{(Q_g)^{3/8}}{(1/2)^{3/8} \times (1/2)^{3/8}}$	$(n)^{3/8} \times S$	0 3/16	

ar - 2.0 m; 100 Year - 3.0 m

rete Barrier w/ Cutouts; Gutter Type - Triangular shape (Flow on Either Side)

Deck Drains

	-	-	-	-	-	-	•
0 1			NT C	X 1 -	x 1.4		n 1
ine Spread	Flow Depth at EOP	Type	NO. OI Inlets	Elevation	Capacity	Carryover	Remarks
(W Lerr)	(<i>d</i> ₁)	rype	meto	Elevation	<i>Capacity</i>	0	
(" LSE)	(a7)		/ ł		m ³ /e	$\frac{\varepsilon}{m^{3/e}}$	
III	111111	-	-		111 / 5	111/5	
0.00	5.5	000.9	2	07.50	0.0429	0.0000	Pier 17
0.00	5.5	559-8	2	87.38	0.0438	0.0000	110.17
0.00	5.3	SS9-8	2	86.81	0.0436	0.0000	
0.00	4.7	SS9-8	2	86.07	0.0431	0.0000	
0.00	8.9	SS9-8	2	85.39	0.0466	0.0000	
0.00	4.7	SS9-8	2	84.72	0.0431	0.0000	
0.00	4.7	SS9-8	2	84.05	0.0431	0.0000	
0.00	7.0	SS9-8	2	83.37	0.0451	0.0000	
0.00	4.7	SS9-8	2	82.70	0.0431	0.0000	
0.00	4.7	SS9-8	2	82.03	0.0431	0.0000	
				81.35		0.0000	Abutment

BRIDGE SCENARIO DESIGNED E	3Y	K3C EM	NW			Deck Thicknes Mannings n	ss (mm)	350 0.013											
CHECKED B	Y	DJ																	
Design Frequency	LOCATION From Inlet	To Inlet	Pipe Length	Pipe Diameter	No. of Pipes	Inlet Elevation	U/S Invert	D/S Invert	Pipe Drop	FLOW, SPREAD A D/S Hanger Depth	AND INLET SPA Pipe Slope	CING Pipe Full Capacity	Pipe Full Velocity	Pipe Efficency	Pipe Capacity w/ Blockage	Inlet Capacity	Pipe Receiving Capacity	Carryover Flow Pipe	Remarks
	Station		L m	Dia mm	-	m	m	m	mm	mm	<u> </u>	Q_{full}	V _{full}	C _{eff.}	Q_{block}	$\frac{Q_i}{m^3/s}$	Q i / Q block	<u>Q</u> cp m ³ /s	
	Station 11+	219.5 to 10+294																	
	11+219.5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1.122	100%	0.079	0.0338	43%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0674	85%	0.000	
2-yr	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1006	70%	0.000	
(Minor System	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600	0.77%	0.251	1.576	100%	0.251	0.1338	53%	0.000	
Event)	10+694.0	10+594.0	100.0	450	1	84.05	82.646	82.073	0	500	0.57%	0.216	1.357	100%	0.216	0.1670	77%	0.000	
	10+594.0	10+494.0	100.0	525	1	83.37	81.998	81.325	75	500	0.67%	0.353	1.630	100%	0.353	0.2002	57%	0.000	
	10+494.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.2334	66%	0.000	
	10+394.0	10+294.0	100.0	600	I	82.03	80.577	/9.904	/5	500	0.67%	0.504	1.782	100%	0.504	0.2666	53%	0.000	A.1
	10+294.0	End				81.55													Abutment
	Station 11+	219.5 to 10+294																	
	11+219.5	11+105.0																	Pier 17
	11+105.0	10+994.0	111.0	300	1	86.81	85.662	84.915	0	500	0.67%	0.079	1.122	100%	0.079	0.0371	47%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0740	93%	0.000	
5-yr (Minor	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1105	77%	0.000	
System	10+794.0	10+694.0	100.0	450	1	04.72 84.05	03.419	82.040	75	500	0.77%	0.251	1.576	100%	0.251	0.1470	59%	0.000	
Event)	10+694.0	10+594.0	100.0	430 525	1	83.37	81.008	81 325	75	500	0.57%	0.216	1.357	100%	0.216	0.1835	85%	0.000	
	10+594.0	10+494.0	100.0	525	1	82.70	81 325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.2200	62%	0.000	
	10+494.0	10+394.0	100.0	600	1	82.03	80.577	79 904	75	500	0.67%	0.353	1.630	100%	0.353	0.2565	/3%	0.000	
	10+394.0	10+294.0 End	100.0	000		81.35	00.577		,0	200	0.0770	0.504	1.782	100%	0.504	0.2929	38%	0.000	Abutment
	101294.0	Lind																	
	Sec. 11.	10.5 4- 10 - 00 -																	
	station 11+	11+105 0	•																Pier 17
	11+219.5	10+004.0	111.0	300	1	86.81	85 662	84 915	0	500	0.67%	0.070	1 122	1009/	0.070	0.0200	409/	0.000	
	10+994.0	10+994.0	100.0	300	1	86.07	84.915	84.242	0	500	0.67%	0.079	1.122	100%	0.079	0.0390	47%	0.000	
10-ve	10+994.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.122	100%	0.144	0.1162	81%	0.000	
(Minor	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600	0.77%	0.251	1.502	100%	0 251	0 1545	62%	0.000	
system	10+694 0	10+594.0	100.0	450	1	84.05	82.646	82.073	0	500	0.57%	0.216	1.357	100%	0.216	0.1928	89%	0.000	
Erenty	10+594.0	10+494.0	100.0	525	1	83.37	81.998	81.325	75	500	0.67%	0.353	1.630	100%	0.353	0.2312	66%	0.000	
	10+494.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.2695	76%	0.000	
	10+394.0	10+294.0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.504	1.782	100%	0.504	0.3079	61%	0.000	
	10+294.0	End				81.35													Abutment

BRIDGE		K3C	NW			Deck Thicknes	s (mm)	350											
SCENARIO						Mannings n		0.013											
DESIGNED	BY	EM																	
CHECKED I	BY	DJ																	
	LOCATION	l T	Di	D'		* 1 -		D/0]	FLOW, SPREAD	AND INLET SPAC	CING	N' E 4	D '	N 0 5	× 1 -	D' D ''		
Design Frequency	From Inlet Station	Inlet	Pipe Length L	Pipe Diameter Dia	No. of Pipes	Inlet Elevation	U/S Invert	D/S Invert	Drop	D/S Hanger Depth	Pipe Slope S	Pipe Full Capacity Q_{full}	Pipe Full Velocity V _{full}	Pipe Efficency C _{eff.}	Pipe Capacity w/ Blockage Q block	Capacity Q_i	Pipe Receiving Capacity Q_i / Q_{block}	Carryover Flow Pipe Q _{cp}	Remarks
			m	mm	-	m	m	m	mm	mm	%					m ³ /s		m ³ /s	
	Station 11+	219 5 to 10+29/																	
	11:210.5	11,105.0																	Pier 17
	11+219.5	11+105.0	111.0	300	1	86.81	85.662	84.015	0	500	0.67%								
	11+105.0	10+994.0	100.0	200	1	00.01	03.002	04.040	0	500	0.670/	0.079	1.122	100%	0.079	0.0438	55%	0.000	
	10+994.0	10+894.0	100.0	300	1	86.07	84.915	84.242	U	500	0.67%	0.079	1.122	100%	0.079	0.0875	110%	0.008	
100-year	10+894.0	10+794.0	100.0	375	1	85.39	84.167	83.494	75	500	0.67%	0.144	1.302	100%	0.144	0.1306	91%	0.000	
(Major System	10+794.0	10+694.0	100.0	450	1	84.72	83.419	82.646	75	600	0.77%	0.251	1.576	100%	0.251	0.1771	71%	0.000	
Event)	10+694.0	10+594.0	100.0	450	1	84.05	82.646	82.073	0	500	0.57%	0.216	1.357	100%	0.216	0.2202	102%	0.004	
	10+594.0	10+494.0	100.0	525	1	83.37	81.998	81.325	75	500	0.67%	0.353	1.630	100%	0.353	0.2633	75%	0.000	
	10+494.0	10+394.0	100.0	525	1	82.70	81.325	80.652	0	500	0.67%	0.353	1.630	100%	0.353	0.3084	87%	0.000	
	10+394.0	10+294 0	100.0	600	1	82.03	80.577	79.904	75	500	0.67%	0.504	1 782	100%	0.504	0 3515	70%	0.000	
	10+294.0	End				81.35											, . , .		Abutment
	10+294.0	Liiu																	
	Road Section	on Data																	
	EBL Width	(m)	5.5																
	Lane Width Shoulder W	(m) idth (m)	3.5 2.0																
	Shoulder 11	.u ()	-10																
	Bridge Star	idard (WC-4 B	ridge Deck Dra	tinage)															
	10 Year Sto 100 Year St	rm	Full lane width	clear of any flo	oding	or of any flood	ina												
	100 1 cai 5t	0111	Willing 2.3 I		i siloulu de cie	ai of any noou	ing												
	Spread Req	uirements																	
	10 Year Spr	ead	2.0																
	100 Year Sp	oread	3.0																

A. Input Data (Apply for A <10 ha)

See "Peak Flow" sheet for desired input values of Area, Runoff Coefficient. Enter Allowable Release Rate, Qr.

0		Subcatchme	ent Attributes	
Outrall #	Area [ha]	С	Tc [min]	Qr [cms]
3	0.35	0.78	10	0.09436

A. Volume Based on IDF Data

Maximum required storage in **Bold Blue** for return period storm [Ensure Td => Tc!! For Selected Max Storage]

ا منا الم			Peak Inflov	v, Qp [cms]			Or [ornal		MRM Vol	ume Storage	e Required, V	/stor [m3]	
τα [min]	2	5	10	25	50	100	Qr [cms]	2	5	10	25	50	100
10	0.0544	0.0724	0.0841	0.0991	0.1102	0.1210	0.09	-	-	-	2.8	9.5	15.98
15	0.0419	0.0558	0.0648	0.0763	0.0848	0.0931	0.09	-	-	-	-	5.6	13.05
20	0.0346	0.0460	0.0535	0.0629	0.0700	0.0769	0.09	-	-	-	-	-	7.33
25	0.0298	0.0396	0.0460	0.0541	0.0602	0.0661	0.09	-	-	-	-	-	0.01
30	0.0263	0.0349	0.0406	0.0477	0.0531	0.0583	0.09	-	-	-	-	-	-
35	0.0236	0.0314	0.0364	0.0429	0.0477	0.0524	0.09	-	-	-	-	-	-
40	0.0215	0.0286	0.0332	0.0391	0.0435	0.0477	0.09	-	-	-	-	-	-
45	0.0198	0.0263	0.0306	0.0360	0.0401	0.0439	0.09	-	-	-	-	-	-
50	0.0184	0.0245	0.0284	0.0334	0.0372	0.0408	0.09	-	-	-	-	-	-
55	0.0172	0.0229	0.0266	0.0312	0.0348	0.0382	0.09	-	-	-	-	-	-
60	0.0162	0.0215	0.0250	0.0294	0.0327	0.0359	0.09	-	-	-	-	-	-
120	0.0099	0.0131	0.0153	0.0179	0.0200	0.0219	0.09	-	-	-	-	-	-
180	0.0074	0.0098	0.0114	0.0134	0.0149	0.0164	0.09	-	-	-	-	-	-
240	0.0060	0.0080	0.0093	0.0109	0.0122	0.0133	0.09	-	-	-	-	-	-
300	0.0051	0.0068	0.0079	0.0093	0.0104	0.0113	0.09	-	-	-	-	-	-
360	0.0045	0.0060	0.0069	0.0081	0.0091	0.0099	0.09	-	-	-	-	-	-
480	0.0037	0.0048	0.0056	0.0066	0.0074	0.0081	0.09	-	-	-	-	-	-
600	0.0031	0.0041	0.0048	0.0056	0.0063	0.0069	0.09	-	-	-	-	-	-
720	0.0027	0.0036	0.0042	0.0049	0.0055	0.0060	0.09	-	-	-	-	-	-
1440	0.0017	0.0022	0.0025	0.0030	0.0033	0.0036	0.09	-	-	-	-	-	-
A. Input Data (Apply for A <10 ha)

See "Peak Flow" sheet for desired input values of Area, Runoff Coefficient. Enter Allowable Release Rate, Qr.

0	Subcatchment Attributes						
Outfall #	Area [ha]	С	Tc [min]	Qr [cms]			
4	0.66	0.77	10	0.19036			

A. Volume Based on IDF Data

Maximum required storage in **Bold Blue** for return period storm [Ensure Td => Tc!! For Selected Max Storage]

ا منا الم			Peak Inflov	v, Qp [cms]			On [ama]		MRM Volu	ume Storage	e Required, \	/stor [m3]	
ta [min]	2	5	10	25	50	100	Qr [cms]	2	5	10	25	50	100
10	0.1028	0.1367	0.1588	0.1870	0.2080	0.2284	0.19	-	-	-	-	10.6	22.84
15	0.0792	0.1053	0.1223	0.1440	0.1602	0.1758	0.19	-	-	-	-	1.4	15.47
20	0.0654	0.0869	0.1009	0.1188	0.1322	0.1451	0.19	-	-	-	-	-	2.82
25	0.0562	0.0747	0.0868	0.1021	0.1137	0.1247	0.19	-	-	-	-	-	-
30	0.0496	0.0659	0.0766	0.0901	0.1003	0.1100	0.19	-	-	-	-	-	-
35	0.0446	0.0592	0.0688	0.0810	0.0901	0.0989	0.19	-	-	-	-	-	-
40	0.0406	0.0540	0.0627	0.0738	0.0821	0.0901	0.19	-	-	-	-	-	-
45	0.0374	0.0497	0.0577	0.0679	0.0756	0.0830	0.19	-	-	-	-	-	-
50	0.0348	0.0462	0.0536	0.0631	0.0703	0.0770	0.19	-	-	-	-	-	-
55	0.0325	0.0432	0.0502	0.0590	0.0657	0.0720	0.19	-	-	-	-	-	-
60	0.0306	0.0406	0.0472	0.0555	0.0618	0.0677	0.19	-	-	-	-	-	-
120	0.0187	0.0248	0.0288	0.0339	0.0377	0.0413	0.19	-	-	-	-	-	-
180	0.0140	0.0185	0.0215	0.0253	0.0282	0.0309	0.19	-	-	-	-	-	-
240	0.0114	0.0151	0.0175	0.0206	0.0229	0.0251	0.19	-	-	-	-	-	-
300	0.0097	0.0128	0.0149	0.0175	0.0195	0.0214	0.19	-	-	-	-	-	-
360	0.0085	0.0113	0.0131	0.0154	0.0171	0.0188	0.19	-	-	-	-	-	-
480	0.0069	0.0092	0.0106	0.0125	0.0139	0.0152	0.19	-	-	-	-	-	-
600	0.0059	0.0078	0.0090	0.0106	0.0119	0.0130	0.19	-	-	-	-	-	-
720	0.0052	0.0068	0.0079	0.0093	0.0104	0.0114	0.19	-	-	-	-	-	-
1440	0.0031	0.0041	0.0048	0.0056	0.0063	0.0069	0.19	-	-	-	-	-	-

Pipe Storage SWM Design Sheet - Outfall 3 - K3C

A. Design Event

Post Dev. 100-yr Flow to Pre Dev. 100-yr Flow

Pre Dev. 100-yr Flow	0.094	m³/s
Post Dev. 100-yr Flow	0.121	m³/s
Vol. Storage Required	16.0	m ³

B. Pipe Data

Upstream Invert	-	
Downstream Invert	-	m
Dia. Of Pipe, d _{pipe}	0.75	m
Area. Of Pipe	0.44	
Length	37.1	m
Pipe Slope	0.002	m/m
Mannings n	0.013	
Full Flow, Q _{full}	0.50	m³/s

C. Orifice Geometry

Dia. Of Orrifice, d _{orifice}	232	mm
Area of Orifice	0.042	m ²
Orifice Coefficient, C _d	0.61	-

$Q_0 = C_d A (2 g h)^{1/2}$

Q = the orifice flow discharge

C_d = dimensionless coefficient of discharge

 A_0 = cross-sectional area of orifice or pipe

g = acceleration due to gravity

D_o = diameter of orifice or pipe

h = effective head on the orifice, from the center of orifice to the water surface

Pipe Storage SWM Design Sheet

D. Stage Storage Discharge and Volume Control

Stage	Stage	Depth to Middle of Orifice	Orifice Discharge	Inc Cross Section	Total Storage	Inc Time	Cumulative Time
%	m	m	m³/s	m²	m ³	(hr)	(hr)
100	0.75	0.75	0.099	0.44	16.4	0.05	0.41
90	0.68	0.68	0.094	0.42	15.5	0.05	0.36
85	0.64	0.64	0.091	0.40	14.8	0.05	0.31
80	0.60	0.60	0.088	0.38	14.1	0.04	0.27
75	0.56	0.56	0.086	0.36	13.2	0.04	0.22
70	0.53	0.53	0.083	0.33	12.3	0.04	0.18
60	0.45	0.45	0.077	0.28	10.3	0.04	0.14
50	0.38	0.38	0.070	0.22	8.2	0.03	0.10
40	0.30	0.30	0.063	0.17	6.1	0.03	0.07
30	0.23	0.23	0.054	0.11	4.1	0.02	0.04
20	0.15	0.15	0.044	0.06	2.3	0.01	0.02
10	0.08	0.08	0.031	0.02	0.9	0.01	0.01

E. Design Outputs

Pipe Full Percentage Required	90%	
Depth in Pipe Required for Volume Control	0.68	m
Additional Storage Depth (Safety Factor)	0.05	m
Depth in Pipe for Volume Control, h _{vol}	0.73	m
Overflow Weir Depth, h _{weir}	0.02	m
Maximum Weir Overflow	0.00	m³/s
97% Vol. Storage	16.2 >	16.0

Pipe Storage SWM Design Sheet - Outfall 4 - K3C

A. Design Event

Post Dev. 100-yr Flow to Pre Dev. 100-yr Flow

Pre Dev. 100-yr Flow	0.190	m³/s
Post Dev. 100-yr Flow	0.228	m³/s
Vol. Storage Required	22.8	m ³

B. Pipe Data

Upstream Invert	-	
Downstream Invert	-	m
Dia. Of Pipe, d _{pipe}	1.35	m
Area. Of Pipe	1.43	
Length	19.3	m
Pipe Slope	0.002	m/m
Mannings n	0.013	
Full Flow, Q _{full}	2.39	m³/s

C. Orifice Geometry

Dia. Of Orrifice, d _{orifice}	285	mm
Area of Orifice	0.064	m²
Orifice Coefficient, C _d	0.61	-

$Q_0 = C_d A (2 g h)^{1/2}$

Q = the orifice flow discharge

C_d = dimensionless coefficient of discharge

 A_0 = cross-sectional area of orifice or pipe

g = acceleration due to gravity

D_o = diameter of orifice or pipe

h = effective head on the orifice, from the center of orifice to the water surface

Pipe Storage SWM Design Sheet

D. Stage Storage Discharge and Volume Control

Stage	Stage	Depth to Middle of Orifice	Orifice Discharge	Inc Cross Section	Total Storage	Inc Time	Cumulative Time
%	m	m	m³/s	m²	m ³	(hr)	(hr)
100	1.35	1.35	0.200	1.43	27.6	0.04	0.34
90	1.22	1.22	0.190	1.36	26.2	0.04	0.30
85	1.15	1.15	0.185	1.30	25.0	0.04	0.26
80	1.08	1.08	0.179	1.23	23.7	0.04	0.22
75	1.01	1.01	0.173	1.15	22.2	0.04	0.19
70	0.95	0.95	0.168	1.07	20.7	0.03	0.15
60	0.81	0.81	0.155	0.90	17.3	0.03	0.12
50	0.68	0.68	0.142	0.72	13.8	0.03	0.09
40	0.54	0.54	0.127	0.53	10.3	0.02	0.06
30	0.41	0.41	0.110	0.36	7.0	0.02	0.04
20	0.27	0.27	0.090	0.20	3.9	0.01	0.02
10	0.14	0.14	0.063	0.07	1.4	0.01	0.01

E. Design Outputs

Pipe Full Percentage Required	90%	
Depth in Pipe Required for Volume Control	1.22	m
Additional Storage Depth (Safety Factor)	0.05	m
Depth in Pipe for Volume Control, h _{vol}	1.27	m
Overflow Weir Depth, h _{weir}	0.08	m
Maximum Weir Overflow	0.02	m³/s
94% Vol. Storage	26.9 >	22.8

Brief Stormceptor Sizing Report - Bridge Crossing Project

Project Information & Location					
Project Name	Bridge Crossing Project	Project Number 7342			
City		State/ Province	Ontario		
Country	Canada	Date 1/31/2019			
Designer Informatio	n	EOR Information (optional)			
Name	david Jackson	Name			
Company	Hatch	Company			
Phone #	905-315-3510	Phone #			
Email	david.jackson@hatch.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	
Target TSS Removal (%)	60
TSS Removal (%) Provided	61
Recommended Stormceptor Model	EF6

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

EF Sizing Summary				
EF Model	% TSS Removal Provided			
EF4	56			
EF6	61			
EF8	66			
EF10	68			
EF12	69			
Parallel Units / MAX	Custom			

Stormceptor[®]

FORTERRA[®]

Sizing Details

Drainage	Water Quality Objective			
Total Area (ha)	0.66	TSS Removal (%)		60.0
Imperviousness %	80.0	Runoff Volume Capture (%)		
Rainfa	Oil Spill Capture Vol	lume (L)		
Station Name	KINGSTON PUMPING	Peak Conveyed Flow Rate (L/s)		
State/Province	Ontario	Water Quality Flow Rate (L/s)		
Station ID #	Station ID # 4175 Up S		am Storage	
Years of Records	44	Storage (ha-m)	Dischar	ge (cms)
Latitude	44°14'N	0.000 0.		000
Longitude 76°29'W		Up Stream Flow Diversion		

Max. Flow to Stormceptor (cms)

Particle Size Distribution (PSD) The selected PSD defines TSS removal					
CA ETV					
Particle Diameter (microns)	Specific Gravity				
2.0	5.0	2.65			
5.0	5.0	2.65			
8.0	10.0	2.65			
20.0	15.0	2.65			
50.0	10.0	2.65			
75.0	5.0	2.65			
100.0	10.0	2.65			
150.0	15.0	2.65			
250.0	15.0	2.65			
500.0	5.0	2.65			
1000.0	5.0	2.65			
Notes					

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

STANDARD SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREAMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, designing, maintaining, and constructing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV). Work includes supply and installation of concrete bases, precast sections, and the appropriate precast section with OGS internal components correctly installed within the system, watertight sealed to the precast concrete prior to arrival to the project site.

1.2 REFERENCE STANDARDS

1.2.1 For Canadian projects only, the following reference standards apply:

CAN/CSA-A257.4-14: Joints for Circular Concrete Sewer and Culvert Pipe, Manhole Sections, and Fittings Using Rubber Gaskets

CAN/CSA-A257.4-14: Precast Reinforced Circular Concrete Manhole Sections, Catch Basins, and Fittings

CAN/CSA-S6-00: Canadian Highway Bridge Design Code

1.2.2 For ALL projects, the following reference standards apply:

ASTM D-4097: Contact Molded Glass Fiber Reinforced Chemical Resistant Tanks

ASTM C 478: Specification for Precast Reinforced Concrete Manhole Sections

ASTM C 443: Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets

ASTM C 891: Standard Practice for Installation of Underground Precast Concrete Utility Structures

ASTM D2563: Standard Practice for Classification of Visual Defects in Reinforced Plastics

1.3 SHOP DRAWINGS

1.3.1 Shop drawings shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail the precast concrete components and OGS internal components prior to shipment, including the sequence for installation.

1.3.2 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record. Any and all changes to project cost estimates, bonding amounts, plan check fees for revision of approved documents, or design impacts due to regulatory requirements as a result of a product substitution shall be coordinated by the Contractor with the Engineer of Record.

1.4 HANDLING AND STORAGE

Prevent damage to materials during storage and handling.

1.4.1 OGS internal components supplied by the Manufacturer for attachment to the precast concrete vessel shall be pre-fabricated, bolted to the precast and watertight sealed to the precast vessel surface prior to site delivery to ensure Manufacturer's internal assembly process and quality control processes are fully adhered to, and to prevent materials damage on site.

1.4.2 Follow all instructions including the sequence for installation in the shop drawings during installation.

PART 2 – PRODUCTS

2.1 GENERAL

2.1.1 The OGS vessel shall be cylindrical and constructed from precast concrete riser and slab components.

2.1.2 The precast concrete OGS internal components shall include a fiberglass insert bolted and watertight sealed inside the precast concrete vessel, prior to site delivery. Primary internal components that are to be anchored and watertight sealed to the precast concrete vessel shall be done so only by the Manufacturer prior to arrival at the job site to ensure product quality.

2.1.3 The OGS shall be allowed to be specified and have the ability to function as a 240degree bend structure in the stormwater drainage system, or as a junction structure.

2.1.4 The OGS to be specified shall have the capability to accept influent flow from an inlet grate and an inlet pipe.

2.2 PRECAST CONCRETE SECTIONS

All precast concrete components shall be designed and manufactured to meet highway loading conditions per State/Provincial or local requirements.

2.3 GASKETS

Only profile neoprene or nitrile rubber gaskets that are oil resistant shall be accepted. For Canadian projects only, gaskets shall be in accordance to CSA A257.4-14. Mastic sealants, butyl tape/rope or Conseal CS-101 alone are not acceptable gasket materials.

2.4 JOINTS

The concrete joints shall be watertight and meet the design criteria according to ASTM C-990. For projects where joints require gaskets, the concrete joints shall be watertight and oil resistant and meet the design criteria according to ASTM C-443. Mastic sealants or butyl tape/rope alone are not an acceptable alternative.

2.5 FRAMES AND COVERS

Frames and covers shall be manufactured in accordance with State/Provincial or local requirements for inspection and maintenance access purposes. A minimum of one cover, at least 22-inch (560 mm) in diameter, shall be clearly embossed with the OGS manufacturer's product name to properly identify this asset's purpose is for stormwater quality treatment.

2.6 PRECAST CONCRETE

All precast concrete components shall conform to the appropriate CSA or ASTM specifications.

2.7 FIBERGLASS

The fiberglass portion of the OGS device shall be constructed in accordance with ASTM D2563, and in accordance with the PS15-69 manufacturing standard, and shall only be installed, bolted and watertight sealed to the precast concrete by the Manufacturer prior to arrival at the project site to ensure product quality.

2.8 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a fiberglass insert for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The total sediment storage capacity shall be a minimum 40 ft³ (1.1 m³). The total petroleum hydrocarbon storage capacity shall be a minimum 50 gallons (189 liters). The access opening to the sump of the OGS device for periodic inspection and maintenance purposes shall be a minimum 16 inches (406 mm) in diameter.

2.9 LADDERS

Ladder rungs shall be provided upon request or to comply with State/Provincial or local requirements.

2.10 INSPECTION

All precast concrete sections shall be level and inspected to ensure dimensions, appearance, integrity of internal components, and quality of the product meets State/Provincial or local specifications and associated standards.

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 HYDROLOGY AND RUNOFF VOLUME

The OGS device shall be engineered, designed and sized to treat a minimum of 90 percent of the average annual runoff volume, unless otherwise stated by the Engineer of Record, using historical rainfall data. Rainfall data sets should be comprised of a minimum 15-years of rainfall data or a longer continuous period if available for a given location, but in all cases a minimum 5-year period of rainfall data.

3.3 ANNUAL (TSS) SEDIMIMENT LOAD AND STORAGE CAPACITY

The OGS device shall be capable of removing and have sufficient storage capacity for the calculated annual total suspended solids (TSS) mass load and volume without scouring previously captured pollutants prior to maintenance being required. The annual (TSS) sediment load and volume transported from the drainage area should be calculated and compared to the OGS device's available storage capacity by the specifying Engineer to ensure adequate capacity between maintenance cycles. Sediment loadings shall be determined by land use and defined as a minimum of 450 kg (992 lb) of sediment (TSS) per impervious hectare of drainage area per year, or greater based on land use, as noted in Table 1 below.

Annual sediment volume calculations shall be performed using the projected average annual treated runoff volume, a typical sediment bulk density of 1602 kg/m³ (100 lbs/ft³) and an assumed Event Mean Concentration (EMC) of 125 mg/L TSS in the runoff, or as otherwise determined by the Engineer of Record.

Example calculation for a 1.3-hectares parking lot site:

• 1.28 meters of rainfall depth, per year

- 1.3 hectares of 100% impervious drainage area
- EMC of 125 mg/L TSS in runoff
- Treatment of 90% of the average annual runoff volume
- Target average annual TSS removal rate of 60% by OGS

Annual Runoff Volume:

- 1.28 m rain depth x 1.3 ha x 10,000 m²/ha= 16,640 m³ of runoff volume
- 16,640 m³ x 1000 L/m³ = 16,640,000 L of runoff volume
- 16,640,000 L x 0.90 = 14,976,000 L to be treated by OGS unit

Annual Sediment Mass and Sediment Volume Load Calculation:

- 14,976,000 L x 125 mg/L x kg/1,000,000 mg = 1,872 kg annual sediment mass
- $1,872 \text{ kg x m}^3/1602 \text{ kg} = 1.17 \text{ m}^3 \text{ annual sediment volume}$
- 1.17 m³ x 60% TSS removal rate by OGS = 0.70 m³ minimum expected annual storage requirement in OGS

As a guideline, the U.S. EPA has determined typical annual sediment loads per drainage area for various sites by land use (see Table 1). Certain States, Provinces and local jurisdictions have also established such guidelines.

Table 1 – Annual Mass Sediment Loading by Land Use								
	Commorcial	Parking Residential		Highwave	Industrial	Shopping		
	Commercial	Lot	High	Med.	Low	Ingilways	muustnai	Center
(lbs/acre/yr)	1,000	400	420	250	10	880	500	440
(kg/hectare/yr)	1,124	450	472	281	11	989	562	494

Source: U.S. EPA Stormwater Best Management Practice Design Guide Volume 1, Appendix D, Table D-1, Burton and Pitt 2002

3.4 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in Table 2, Section 3.5, and based on third-party performance testing conducted in accordance with the Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**. Sizing shall be determined using historical rainfall data (as specified in Section 3.2) and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 3.3.

3.4.1 The Peclet Number is not an approved method or model for calculating TSS removal, sizing, or scaling OGS devices.

3.4.2 If an alternate OGS device is proposed, supporting documentation shall be submitted that demonstrates:

- Canadian ETV or ISO 14034 ETV Verification Statement which verifies third-party performance testing conducted in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators
- Equal or better sediment (TSS) removal of the PSD specified in Table 2 at equivalent surface loading rates, as compared to the OGS device specified herein.
- Equal or greater sediment storage capacity, as compared to the OGS device specified herein.
- Supporting documentation shall be signed and sealed by a local registered Professional Engineer. All costs associated with preparing and certifying this documentation shall be born solely by the Contractor.

3.5 PARTICLE SIZE DISTRIBUTION (PSD) FOR SIZING

The OGS device shall be sized to achieve the Engineer-specified average annual percent sediment (TSS) removal based solely on the test sediment used in the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** This test sediment is comprised of inorganic ground silica with a specific gravity of 2.65, uniformly mixed, and containing a broad range of particle sizes as specified in Table 2. No alternative PSDs or deviations from Table 2 shall be accepted.

Table 2 Canadian ETV Program Procedure for Laboratory Testing of Oil-Grit Separators Particle Size Distribution (PSD) of Test Sediment						
Particle Diameter (Microns) % by Mass of All Particles Specific Gravity						
1000	5%	2.65				
500	5%	2.65				
250	15%	2.65				
150	15%	2.65				
100	10%	2.65				
75	5%	2.65				
50	10%	2.65				
20	15%	2.65				
8	10%	2.65				
5	5%	2.65				
2	5%	2.65				

3.6 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**. This scour testing is conducted with the device pre-loaded with test sediment comprised of the particle size distribution (PSD) illustrated in Table 2.

3.6.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

Data generated from laboratory scour testing performed with an OGS device pre-loaded with a coarser PSD than in Table 2 (i.e. the coarser PSD has no particles in the 1-micron to 50-micron size range, or the D_{50} of the test sediment exceeds 75 microns) shall not be acceptable for the determination of the device's suitability for on-line installation.

3.7 DESIGN ACCOUNTING FOR BYPASS

3.7.1 The OGS device shall be specified to achieve the TSS removal performance and water quality objectives without washout of previously captured pollutants. The OGS device shall also have sufficient hydraulic conveyance capacity to convey the peak storm event, in accordance with hydraulic conditions per the Engineer of Record. To ensure this is achieved, there are two design options with associated requirements:

3.7.1.1 The OGS device shall be placed **off-line** with an upstream diversion structure (typically in an upstream manhole) that only allows the water quality volume to be diverted to the OGS device, and excessive flows diverted downstream around the OGS device to prevent high flow washout of pollutants previously captured. This design typically incorporates a triangular layout including an upstream bypass manhole with an appropriately engineered weir wall, the OGS device, and a downstream junction manhole, which is connected to both the OGS device and bypass structure. In this case with an external bypass required, the OGS device manufacturer must provide calculations and designs for all structures, piping and any other required material applicable to the proper functioning of the system, stamped by a Professional Engineer.

3.7.1.2 Alternatively, OGS devices in compliance with Section 3.6 shall be acceptable for an **on-line** design configuration, thereby eliminating the requirement for an upstream bypass manhole and downstream junction manhole.

3.7.2 The OGS device shall also have sufficient hydraulic conveyance capacity to convey the peak storm event, in accordance with hydraulic conditions per the Engineer of Record. If an alternate OGS device is proposed, supporting documentation shall be submitted that demonstrates equal or better hydraulic conveyance capacity as compared to the OGS device specified herein. This documentation shall be signed and sealed by a local registered Professional Engineer. All costs associated with preparing and certifying this documentation shall be born solely by the Contractor.

3.8 PETROLEUM HYDROCARBONS AND FLOATABLES STORAGE CAPACITY

Petroleum hydrocarbons and floatables storage capacity in the OGS device shall be a minimum 50 gallons (189 Liters), or more as specified.

3.8.1 The OGS device shall have gasketed precast concrete joints that are watertight, and oil resistant and meet the design criteria according to ASTM C-443 to provide safe oil and other hydrocarbon materials storage and ground water protection. Mastic sealants or butyl tape/rope alone are not an acceptable alternative.

3.9 SURFACE LOADING RATE SCALING OF DIFFERENT MODEL SIZES

The reference device for scaling shall be an OGS device that has been third-party tested in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**. Other model sizes of the tested device shall only be scaled such that the claimed TSS removal efficiency of the scaled device shall be no greater than the TSS removal efficiency of the tested device at identical **surface loading rates** (flow rate divided by settling surface area). The depth of other model sizes of the tested device shall be scaled in accordance with the depth scaling provisions within Section 6.0 of the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.9.1 The Peclet Number and volumetric scaling are not approved methods for scaling OGS devices.

PART 4 – INSPECTION & MAINTENANCE

The OGS manufacturer shall provide an Owner's Manual upon request.

- 4.1 A Quality Assurance Plan that provides inspection and maintenance for a minimum of 5 years shall be included with the OGS stormwater quality device, and written into the Environmental Compliance Approval (ECA) or the appropriate State/Provincial or local approval document.
- 4.2 OGS device inspection shall include determination of sediment depth and presence of petroleum hydrocarbons and floatables below the insert. Inspection shall be easily conducted from finished grade through a Frame and Cover of at least 22 inch (560 mm) in diameter.
- 4.3 Inspection and pollutant removal from below the OGS's insert shall be conducted as a periodic maintenance practice using a standard maintenance truck and vacuum apparatus, and shall be easily conducted from finished grade through a Frame and Cover of at least 22-inches (560 mm) in diameter, and through an access opening to the OGS device's sump with a minimum 16-inches diameter (406 mm).

4.4 No confined space for sediment removal or inspection of internal components shall be required for normal operation, annual inspection or maintenance activity.

PART 5 – EXECUTION

5.1 PRECAST CONCRETE INSTALLATION

The installation of the precast concrete OGS stormwater quality treatment device shall conform to ASTM C 891, ASTM C 478, ASTM C 443, CAN/CSA-A257.4-14, CAN/CSA-A257.4-14, CAN/CSA-S6-00 and all highway, State/Provincial, or local specifications for the construction of manholes. Selected sections of a general specification that are applicable are summarized below. The Contractor shall furnish all labor, equipment and materials necessary to offload, assemble as needed the OGS internal components as specified in the Shop Drawings.

5.2 EXCAVATION

5.2.1 Excavation for the installation of the OGS stormwater quality treatment device shall conform to highway, State/Provincial or local specifications. Topsoil that is removed during the excavation for the OGS stormwater quality treatment device shall be stockpiled in designated areas and not be mixed with subsoil or other materials. Topsoil stockpiles and the general site preparation for the installation of the OGS stormwater quality device shall conform to highway, State/Provincial or local specifications.

5.2.2 The OGS device shall not be installed on frozen ground. Excavation shall extend a minimum of 12 inch (300 mm) from the precast concrete surfaces plus an allowance for shoring and bracing where required. If the bottom of the excavation provides an unsuitable foundation additional excavation may be required.

5.2.3 In areas with a high water table, continuous dewatering shall be provided to ensure that the excavation is stable and free of water.

5.3 BACKFILLING

Backfill material shall conform to highway, State/Provincial or local specifications. Backfill material shall be placed in uniform layers not exceeding 12 inches (300 mm) in depth and compacted to highway, State/Provincial or local specifications.

5.4 OGS WATER QUALITY DEVICE CONSTRUCTION SEQUENCE

5.4.1 The precast concrete OGS stormwater quality treatment device is installed and leveled in sections in the following sequence:

- aggregate base
- base slab, or base
- riser section(s) (if required)
- riser section w/ pre-installed fiberglass insert
- upper riser section(s)
- internal OGS device components
- connect inlet and outlet pipes
- riser section, top slab and/or transition (if required)
- frame and access cover

5.4.2 The precast concrete base shall be placed level at the specified grade. The entire base shall be in contact with the underlying compacted granular material. Subsequent sections, complete with oil resistant, watertight joint seals, shall be installed in accordance with the precast concrete manufacturer's recommendations.

5.4.3 Adjustment of the OGS stormwater quality treatment device can be performed by lifting the upper sections free of the excavated area, re-leveling the base, and re-installing the sections.

Detailed Stormceptor Sizing Report – West Bank

Project Information & Location					
Project Name	Third Crossing - West Bank	Project Number 27143			
City	Kingston State/ Province		Ontario		
Country	Canada	Date 8/2/2016			
Designer Information	1	EOR Information (optional)			
Name	Bobby Pettigrew	Name			
Company	J.L. Richards	Company			
Phone # 613-728-3571		Phone #			
Email	bpettigrew@jlrichards.ca	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	West Bank	
Recommended Stormceptor Model	OSR 2000	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	80	
PSD	Roads/Hardstand	
Rainfall Station	KINGSTON PUMPING STATION	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
OSR Model	% TSS Removal Provided		
OSR 300	62		
OSR 750	74		
OSR 2000	80		
OSR 4000	85		
OSR 6000	87		
OSR 9000	90		
OSR 14000	92		
Stormceptor MAX	Custom		

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur.

Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station						
State/Province Ontario Total Number of Rainfall Events 5285						
Rainfall Station Name	KINGSTON PUMPING STATION	Total Rainfall (mm)	22574.7			
Station ID # 4175 Average Annual Rainfall (not set in the set of		Average Annual Rainfall (mm)	513.1			
Coordinates	44°14'N, 76°29'W	Total Evaporation (mm)	1505.2			
Elevation (ft)	251	Total Infiltration (mm)	7626.1			
Years of Rainfall Data	44	Total Rainfall that is Runoff	13443.4			

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

FORTERRA[®]

Drainage Area		
Total Area (ha)	3.84	
Imperviousness %	66.2	
Water Quality Objective		
TSS Removal (%)	80.0	
Runoff Volume Capture (%)		
Oil Spill Capture Volume (L)		
Peak Conveyed Flow Rate (L/s)	440.00	
Water Quality Flow Rate (L/s)		

Up Stream Storage			
Storage (ha-m)	Discha	Discharge (cms)	
0.000	0.	000	
Up Stream	Flow Diversi	on	
Max. Flow to Stormcer	otor (cms)		
Design Details			
Stormceptor Inlet Invert Elev (m) 77.50		77.50	
Stormceptor Outlet Invert Elev (m)		76.90	
Stormceptor Rim Elev (m)		78.50	
Normal Water Level Elevation (m)		76.90	
Pipe Diameter (mm)		750	
Pipe Material		RCP - concrete	
Multiple Inlets (Y/N)		Yes	
Grate Inlet (Y/N) No		No	

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Roads/Hardstand			
Particle Diameter (microns)	Distribution %	Specific Gravity	
0.2	0.1	2.65	
22.6	9.9	2.65	
99.9	40.0	2.65	
340.7	40.0	2.65	
1000.0	9.9	2.65	
2000.0	0.1	2.65	

Stormceptor [®]		• FORTERI	RA"
Site Name		West Bank	
	Site I	Details	
Drainage Area		Infiltration Parameters	
Total Area (ha)	3.84	Horton's equation is used to estimate infiltration	
Imperviousness %	66.2	Max. Infiltration Rate (mm/hr)61.98	
Surface Characteristics	\$	Min. Infiltration Rate (mm/hr)10.16	
Width (m)	392.00	Decay Rate (1/sec) 0.00055	5
Slope %	2	Regeneration Rate (1/sec)0.01	
Impervious Depression Storage (mm)	0.508	Evaporation	
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)2.54	
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0	
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration 0	
	TSS Loadin	g Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Parameters	
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

FORTERRA[®]

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)	
1	44.855	474.191	8.6	
4	139.603	379.446	26.9	
9	249.845	269.347	48.1	
16	337.779	181.26	65.1	
25	400.188	118.816	77.1	
36	443.008	76.072	85.4	
49	469.969	49.041	90.5	
64	486.425	32.603	93.7	
81	497.39	21.633	95.8	
100	504.816	14.219	97.3	
121	509.788	9.238	98.2	
144	513.277	5.752	98.9	
169	515.351	3.676	99.3	
196	516.591	2.438	99.5	
225	517.412	1.616	99.7	
256	517.995	1.033	99.8	
289	518.369	0.658	99.9	
324	518.604	0.424	99.9	
361	518.747	0.281	99.9	

FORTERRA"

Rainfall Event Analysis				
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)
6.35	4215	79.8	6465	28.6
12.70	603	11.4	5520	24.5
19.05	234	4.4	3602	16.0
25.40	100	1.9	2240	9.9
31.75	63	1.2	1775	7.9
38.10	31	0.6	1085	4.8
44.45	16	0.3	642	2.8
50.80	15	0.3	692	3.1
57.15	3	0.1	161	0.7
63.50	1	0.0	58	0.3
69.85	2	0.0	132	0.6
76.20	0	0.0	0	0.0
82.55	1	0.0	78	0.3
88.90	0	0.0	0	0.0
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0
107.95	0	0.0	0	0.0
114.30	0	0.0	0	0.0
120.65	0	0.0	0	0.0
127.00	1	0.0	124	0.5
133.35	0	0.0	0	0.0
139.70	0	0.0	0	0.0

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

Detailed Stormceptor Sizing Report – East Bank

Project Information & Location			
Project Name	Third Crossing - East Bank	Project Number 27143	
City	Kingston	State/ Province	Ontario
Country	Canada	Date 8/2/2016	
Designer Information		EOR Information (optional)	
Name	Bobby Pettigrew	Name	
Company	J.L. Richards	Company	
Phone #	613-728-3571	Phone #	
Email	bpettigrew@jlrichards.ca	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	East Bank	
Recommended Stormceptor Model	STC 2000	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	80	
PSD	Roads/Hardstand	
Rainfall Station	KINGSTON PUMPING STATION	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 300	60		
STC 750	74		
STC 1000	75		
STC 1500	76		
STC 2000	80		
STC 3000	81		
STC 4000	85		
STC 5000	86		
STC 6000	88		
STC 9000	91		
STC 10000	91		
STC 14000	93		
Stormceptor MAX	Custom		

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur.

Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station			
State/Province	Ontario Total Number of Rainfall Events 5285		
Rainfall Station Name	KINGSTON PUMPING STATION	Total Rainfall (mm)	22574.7
Station ID #	4175	Average Annual Rainfall (mm)	513.1
Coordinates	44°14'N, 76°29'W	Total Evaporation (mm)	1081.1
Elevation (ft)	251	Total Infiltration (mm)	11374.8
Years of Rainfall Data	44	Total Rainfall that is Runoff	10118.8

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

FORTERRA

Drainage Area		
Total Area (ha)	3.42	
Imperviousness %	49.6	
Water Quality Objective		
TSS Removal (%)	80.0	
Runoff Volume Capture (%)		
Oil Spill Capture Volume (L)		
Peak Conveyed Flow Rate (L/s)	370.00	
Water Quality Flow Rate (L/s)		

Up Stream Storage			
Storage (ha-m)	Discha	Discharge (cms)	
0.000	0.	.000	
Up Stream	Flow Diversi	on	
Max. Flow to Stormcer	otor (cms)		
Design Details			
Stormceptor Inlet Invert Elev (m) 77.50			
Stormceptor Outlet Invert Elev (m)		76.90	
Stormceptor Rim Elev (m)		78.00	
Normal Water Level Elevation (m)		76.90	
Pipe Diameter (mm)		750	
Pipe Material		RCP - concrete	
Multiple Inlets (Y/N)		Yes	
Grate Inlet (Y/N)		No	

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Roads/Hardstand							
Particle Diameter (microns)	Distribution %	Specific Gravity					
0.2	0.1	2.65					
22.6	9.9	2.65					
99.9	40.0	2.65					
340.7	40.0	2.65					
1000.0	9.9	2.65					
2000.0	0.1	2.65					

Storm ceptor®		FORTERRA				
Site Name		East Bank				
Site Details						
Drainage Area		Infiltration Parameters				
Total Area (ha)	3.42	Horton's equation is used to estimate infiltration				
Imperviousness %	49.6	Max. Infiltration Rate (mm/hr)61	61.98			
Surface Characteristics		Min. Infiltration Rate (mm/hr)10	16			
Width (m)	370.00	Decay Rate (1/sec) 0.00	055			
Slope %	2	Regeneration Rate (1/sec)0.1)1			
Impervious Depression Storage (mm)	0.508	Evaporation				
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)2.	54			
Impervious Manning's n	0.015	Dry Weather Flow				
Pervious Manning's n	0.25	Dry Weather Flow (lps)				
Maintenance Frequency	ý	Winter Months				
Maintenance Frequency (months) > 12		Winter Infiltration)			
	TSS Loading	Parameters				
TSS Loading Function						
Buildup/Wash-off Parameters		TSS Availability Parameters				
Target Event Mean Conc. (EMC) mg/L		Availability Constant A				
Exponential Buildup Power		Availability Factor B				
Exponential Washoff Exponent		Availability Exponent C				
		Min. Particle Size Affected by Availability (micron)				

FORTERRA[®]

Cumulative Runoff Volume by Runoff Rate									
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)						
1	40.34	307.919	11.6						
4	125.777	222.489	36.1						
9	206.863	141.494	59.4						
16	262.394	85.842	75.3						
25	297.786	50.485	85.5						
36	318.233	30.036	91.4						
49	329.86	18.406	94.7						
64	337.012	11.255	96.8						
81	341.52	6.75	98.1						
100	344.387	3.886	98.9						
121	345.971	2.301	99.3						
144	346.871	1.401	99.6						
169	347.451	0.822	99.8						
196	347.794	0.478	99.9						
225	347.982	0.291	99.9						
256	348.097	0.176	99.9						

Cumulative Runoff Volume by Runoff Rate

For area: 3.42(ha), imperviousness: 49.6%, rainfall station: KINGSTON PUMPING STATION

FORTERRA"

Rainfall Event Analysis								
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)				
6.35	4215	79.8	6465	28.6				
12.70	603	11.4	5520	24.5				
19.05	234	4.4	3602	16.0				
25.40	100	1.9	2240	9.9				
31.75	63	1.2	1775	7.9				
38.10	31	0.6	1085	4.8				
44.45	16	0.3	642	2.8				
50.80	15	0.3	692	3.1				
57.15	3	0.1	161	0.7				
63.50	1	0.0	58	0.3				
69.85	2	0.0	132	0.6				
76.20	0	0.0	0	0.0				
82.55	1	0.0	78	0.3				
88.90	0	0.0	0	0.0				
95.25	0	0.0	0	0.0				
101.60	0	0.0	0	0.0				
107.95	0	0.0	0	0.0				
114.30	0	0.0	0	0.0				
120.65	0	0.0	0	0.0				
127.00	1	0.0	124	0.5				
133.35	0	0.0	0	0.0				
139.70	0	0.0	0	0.0				

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

Damaged sections and gaskets shall be repaired or replaced as necessary. Once the OGS stormwater quality treatment device has been constructed, any lift holes must be plugged with mortar.

5.5 DROP PIPE AND OIL INSPECTION PIPE

Once the upper precast concrete riser has been attached to the lower precast concrete riser section, the OGS device Drop Pipe and Oil Inspection Pipe must be attached, and watertight sealed to the fiberglass insert using Sikaflex 1a. Installation instructions and required materials shall be provided by the OGS manufacturer.

5.6 INLET AND OUTLET PIPES

Inlet and outlet pipes shall be securely set using grout or approved pipe seals (flexible boot connections, where applicable) so that the structure is watertight. Non-secure inlets and outlets will result in improper performance.

5.7 FRAME AND COVER OR FRAME AND GRATE INSTALLATION

Precast concrete adjustment units shall be installed to set the frame and cover/grate at the required elevation. The adjustment units shall be laid in a full bed of mortar with successive units being joined using sealant recommended by the manufacturer. Frames for the cover/grate should be set in a full bed of mortar at the elevation specified.

5.7.1 A minimum of one cover, at least 22-inch (560 mm) in diameter, shall be clearly embossed with the OGS device brand or product name to properly identify this asset's purpose is for stormwater quality treatment.

DRAWING NOT TO BE USED FOR CONSTRUCTION

						_						
	Δ		40			The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems ("Imbrium"). Neither this drawing, nor any part thereof, may be	the prior written consent of Imbrum. Failure to comply the done at the users own risk and Imbrum expression	discialms any liability or responsibility for such use. If discrepancies between the supplied information upon	which the drawing is based and actual field conditions are encountered as site work progresses, these	for re-evaluation of the design. Imbrium accepts no stability for designs based on missing, incomplete or	Inaccurate Information supplied by others.
		//					###	####	###	JSK	JSK	BY
		0.					¥ #####	# 	# 	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION
<u>'LAN VI</u>	<u>ew (st</u> /	<u>ANDARD</u>)				#####	#####	#####	6/8/18	05/26/17	DATE
							#####	####	#####	1	0	MARK
								.9		SCALE = NTS		
PLAN VI	IEW (INL	<u>ET TOF</u>	<u>)</u>					ŝ		1, MD 21076 +1-416-880-81	FOLLOWING PATENTS	Latrigue (Chine Pade sen Peserino 11,000 antos (Pade at No. 31,000 fei - 0,000,700 - 0,071
ECIFIC				EN	ITS					HANOVER 31 INTL	NOTE OF THE WOLL Australia	March 1 March
D D	=L	Eł	-o		*					TTE 350	TED BY CHE O	
	N RATE (I	_/s)			*				Õ	CA BU	MIR PROTECT	A PERSONAL PROPERTY AND INC.
ATE (L/s) *						\subset	10GE Rt	Part No. 60				
OD OF F	PEAK FLO	W (yrs)			*					7037 F		
			<u> </u>		*	DAT	E:					2
	MATL	DIA	, SLOPE	%	HGL	5/2 DES	G/20)17 D:	, c	RAW	N:	
*	*	*	*	_	*	JS CHE	K K).		JSK		
*	*	*	*		*	BS	F		;	SP	0.	
*	*	*	*		*	PRO EF	јест 6	No.:	s '	EQUE *	NCE	No.:
ER OF R	ECORD					SHE	ET:	1		OF	1	